Laila Elmaazouzi
University Cadi Ayyad

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

Emotion recognition from syllabic units using k-nearest-neighbor classification and energy distribution Abdellah Agrima; Ilham Mounir; Abdelmajid Farchi; Laila Elmaazouzi; Badia Mounir
International Journal of Electrical and Computer Engineering (IJECE) Vol 11, No 6: December 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v11i6.pp5438-5449

Abstract

In this article, we present an automatic technique for recognizing emotional states from speech signals. The main focus of this paper is to present an efficient and reduced set of acoustic features that allows us to recognize the four basic human emotions (anger, sadness, joy, and neutral). The proposed features vector is composed by twenty-eight measurements corresponding to standard acoustic features such as formants, fundamental frequency (obtained by Praat software) as well as introducing new features based on the calculation of the energies in some specific frequency bands and their distributions (thanks to MATLAB codes). The extracted measurements are obtained from syllabic units’ consonant/vowel (CV) derived from Moroccan Arabic dialect emotional database (MADED) corpus. Thereafter, the data which has been collected is then trained by a k-nearest-neighbor (KNN) classifier to perform the automated recognition phase. The results reach 64.65% in the multi-class classification and 94.95% for classification between positive and negative emotions.
Efficiency of the energy contained in modulators in the Arabic vowels recognition Nesrine Abajaddi; Youssef Elfahm; Badia Mounir; Laila Elmaazouzi; Ilham Mounir; Abdelmajid Farchi
International Journal of Electrical and Computer Engineering (IJECE) Vol 11, No 4: August 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v11i4.pp3601-3608

Abstract

The speech signal is described as many acoustic properties that may contribute differently to spoken word recognition. Vowel characterization is an important process of studying the acoustic characteristics or behaviors of speech within different contexts. This current study focuses on the modulators characteristics of three Arabic vowels, we proposed a new approach to characterize the three Arabic vowels /a/, /i/ and /u/. The proposed method is based on the energy contained in the speech modulators. The coherent subband demodulation method related to the spectral center of gravity (COG) was used to calculate the energy of the speech modulators. The obtained results showed that the modulators energy help characterize the Arabic vowels /a/, /i/ and /u/ with an interesting recognition rate ranging from 86% to 100%.
Characterization of Arabic sibilant consonants Youssef Elfahm; Nesrine Abajaddi; Badia Mounir; Laila Elmaazouzi; Ilham Mounir; Abdelmajid Farchi
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 2: April 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v13i2.pp1997-2008

Abstract

The aim of this study is to develop an automatic speech recognition system in order to classify sibilant Arabic consonants into two groups: alveolar consonants and post-alveolar consonants. The proposed method is based on the use of the energy distribution, in a consonant-vowel type syllable, as an acoustic cue. The application of this method on our own corpus reveals that the amount of energy included in a vocal signal is a very important parameter in the characterization of Arabic sibilant consonants. For consonants classifications, the accuracy achieved to identify consonants as alveolar or post-alveolar is 100%. For post-alveolar consonants, the rate is 96% and for alveolar consonants, the rate is over 94%. Our classification technique outperformed existing algorithms based on support vector machines and neural networks in terms of classification rate.