A. R. Abdullah
Universiti Teknikal Malaysia Melaka

Published : 15 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : TELKOMNIKA (Telecommunication Computing Electronics and Control)

A verification of periodogram technique for harmonic source diagnostic analytic by using logistic regression M. Manap; M. H. Jopri; A. R. Abdullah; R. Karim; M. R. Yusoff; AH Azahar
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 17, No 1: February 2019
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v17i1.10390

Abstract

A harmonic source diagnostic analytic is vital to identify the root causes and type of harmonic source in power system. This paper introduces a verification of periodogram technique to diagnose harmonic sources by using logistic regression classifier. A periodogram gives a correct and accurate classification of harmonic signals. Signature recognition pattern is used to distinguish the harmonic sources accurately by obtaining the distribution of harmonic and interharmonic components and the harmonic contribution changes. This is achieved by using the significant signature recognition of harmonic producing load obtained from the harmonic contribution changes. To verify the performance of the propose method, a logistic regression classifier will analyse the result and give the accuracy and positive rate percentage of the propose method. The adequacy of the proposed methodology is tested and verified on distribution system for several rectifier and inverter-based loads.
Application of gabor transform in the classification of myoelectric signal Jingwei Too; A. R. Abdullah; N. Mohd Saad; N. Mohd Ali; T. N. S. Tengku Zawawi
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 17, No 2: April 2019
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v17i2.9257

Abstract

In recent day, Electromyography (EMG) signal are widely applied in myoelectric control. Unfortunately, most of studies focused on the classification of EMG signals based on healthy subjects. Due to the lack of study in amputee subject, this paper aims to investigate the performance of healthy and amputee subjects for the classification of multiple hand movement types. In this work, Gabor transform (GT) is used to transform the EMG signal into time-frequency representation. Five time-frequency features are extracted from GT coefficient. Feature extraction is an effective way to reduce the dimensionality, as well as keeping the valuable information. Two popular classifiers namely k-nearest neighbor (KNN) and support vector machine (SVM) are employed for performance evaluation. The developed system is evaluated using the EMG data acquired from the publicy available NinaPro Database. The results revealed that the extracting GT features can achieve promising performance in the classification of EMG signals.