Sathish Kumar Selvaperumal
Asia Pacific University of Technology and Innovation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

IoT based on secure personal healthcare using RFID technology and steganography Haider Ali Khan; Raed Abdulla; Sathish Kumar Selvaperumal; Ammar Bathich
International Journal of Electrical and Computer Engineering (IJECE) Vol 11, No 4: August 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v11i4.pp3300-3309

Abstract

Internet of things (IoT) makes it attainable for connecting different various smart objects together with the internet. The evolutionary medical model towards medicine can be boosted by IoT with involving sensors such as environmental sensors inside the internal environment of a small room with a specific purpose of monitoring of person's health with a kind of assistance which can be remotely controlled. RF identification (RFID) technology is smart enough to provide personal healthcare providing part of the IoT physical layer through low-cost sensors. Recently researchers have shown more IoT applications in the health service department using RFID technology which also increases real-time data collection. IoT platform which is used in the following research is Blynk and RFID technology for the user's better health analyses and security purposes by developing a two-level secured platform to store the acquired data in the database using RFID and Steganography. Steganography technique is used to make the user data more secure than ever. There were certain privacy concerns which are resolved using this technique. Smart healthcare medical box is designed using SolidWorks health measuring sensors that have been used in the prototype to analyze real-time data.
Integrated approach of brain segmentation using neuro fuzzy k-means Jawwad Sami Ur Rahman; Sathish Kumar Selvaperumal
Indonesian Journal of Electrical Engineering and Computer Science Vol 29, No 1: January 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v29.i1.pp270-276

Abstract

A proposed method using neuro-fuzzy k-means for the segmentation process of brain has been developed successfully, simulated and assessed. The proposed method has been assessed by using clinical brain images of magnetic resonance imaging (MRI) technology, to segment the three main tissues of the brain. The proposed system is able to segment the three important regions of the brain, which are white matter, grey matter and cerebrospinal fluid (CSF) more accurately, as compared to the benchmarked algorithms. Furthermore, the developed method’s misclassification rate (MR) has been significantly minimized by 88%, 27%, 88%; 82%, 71%, 84%; and 82%, 29%, 83%, as compared to k-means, fuzzy logic, and radial basis function (RBF) for white matter, grey matter and CSF, respectively. Also, from the visual interpretation, it is observed that the brain’s edges are well preserved and the tissues are clearly segmented. From these measures, the proposed integrated approach is shown to be accurate in segmenting the MRI brain tissue with reduced misclassified pixels.