Shaik Humera Tauseef
Khaja Bandanawaz College of engineering

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Interference aware resource allocation model for D2D under cellular network Ruksar Fatima; Rohina Khanam; Shaik Humera Tauseef
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 2: April 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (379.718 KB) | DOI: 10.11591/ijece.v10i2.pp1612-1621

Abstract

Device-to-Device communication (D2D) has emerged as an efficient communication model in future generation cellular network for offloading cellular traffic and enhance overall network performance. D2D communication aid in attaining better spectrum utilization, lower delay, and less energy consumption, which can well adapt to meet demand of higher transmission rate, larger network capacity. Further, enhances spectral efficiency by reutilizing resource. However, it may result in severe cross-tier interference and co-tier interference. Therefore, efficient interference modelling design are required to address performance degradation caused by the interferences. The existing model has focused on addressing interference considering D2D association operating on same cell with the cellular association. As a result, it incurs interference to the cellular user located in the same cell. However, practically D2D association in overlapping area will reutilize spectrum of multiple neighboring cells. As a result, it incurs interference in multiple cells. For overcoming research challenges, this work presented Interference Aware Resource Allocation (IARA) model for D2D under cellular network as a game theory model. This work consider a resource allocation game where base station as a contender for catering D2D resource needs under different assumptions. Experiment are conducted to evaluate performance of IARA. The outcome shows IARA attained significant performance improvement over state-of-art models in terms of sum rate (utility), successful packet transmission, revenue, and delay.