Gökhan Erdemir
İstanbul Sabahattin Zaim University

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Performance analysis of real-time and general-purpose operating systems for path planning of the multi-robot systems Seçkin Canbaz; Gökhan Erdemir
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 1: February 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i1.pp285-292

Abstract

In general, modern operating systems can be divided into two essential parts, real-time operating systems (RTOS) and general-purpose operating systems (GPOS). The main difference between GPOS and RTOS is the system istime-critical or not. It means that; in GPOS, a high-priority thread cannot preempt a kernel call. But, in RTOS, a low-priority task is preempted by a high-priority task if necessary, even if it’s executing a kernel call. Most Linux distributions can be used as both GPOS and RTOS with kernel modifications. In this study, two Linux distributions, Ubuntu and Pardus, were analyzed and their performances were compared both as GPOS and RTOS for path planning of the multi-robot systems. Robot groups with different numbers of members were used to perform the path tracking tasks using both Ubuntu and Pardus as GPOS and RTOS. In this way, both the performance of two different Linux distributions in robotic applications were observed and compared in two forms, GPOS, and RTOS.
Short-term wind speed forecasting system using deep learning for wind turbine applications Gokhan Erdemir; Aydin Tarik Zengin; Tahir Cetin Akinci
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 6: December 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (506.228 KB) | DOI: 10.11591/ijece.v10i6.pp5779-5784

Abstract

It is very important to accurately detect wind direction and speed for wind energy that is one of the essential sustainable energy sources. Studies on the wind speed forecasting are generally carried out for long-term predictions. One of the main reasons for the long-term forecasts is the correct planning of the area where the wind turbine will be built due to the high investment costs and long-term returns. Besides that, short-term forecasting is another important point for the efficient use of wind turbines. In addition to estimating only average values, making instant and dynamic short-term forecasts are necessary to control wind turbines. In this study, short-term forecasting of the changes in wind speed between 1-20 minutes using deep learning was performed. Wind speed data was obtained instantaneously from the feedback of the emulated wind turbine's generator. These dynamically changing data was used as an input of the deep learning algorithm. Each new data from the generator was used as both test and training input in the proposed approach. In this way, the model accuracy and enhancement were provided simultaneously. The proposed approach was turned into a modular independent integrated system to work in various wind turbine applications. It was observed that the system can predict wind speed dynamically with around 3% error in the applications in the test setup applications.