Claim Missing Document
Check
Articles

Found 2 Documents
Search

An optimized approach for extensive segmentation and classification of brain MRI Harish S; G.F Ali Ahammed
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 3: June 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (387.617 KB) | DOI: 10.11591/ijece.v10i3.pp2392-2401

Abstract

With the significant contribution in medical image processing for an effective diagnosis of critical health condition in human, there has been evolution of various methods and techniques in abnormality detection and classification process. An insight to the existing approaches highlights that potential amount of work is being carried out in detection and segmentation process but less effective modelling towards classification problems. This manuscript discusses about a simple and robust modelling of a technique that offers comprehensive segmentation process as well as classification process using Artificial Neural Network. Different from any existing approach, the study offers more granularities towards foreground/background indexing with its comprehensive segmentation process while introducing a unique morphological operation along with graph-believe network for ensuring approximately 99% of accuracy of proposed system in contrast to existing learning scheme.
Integrated Modelling Approach for Enhancing Brain MRI with Flexible Pre-Processing Capability Harish S; G.F Ali Ahammed
International Journal of Electrical and Computer Engineering (IJECE) Vol 9, No 4: August 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (515.627 KB) | DOI: 10.11591/ijece.v9i4.pp2416-2424

Abstract

The assurance of an information quality of the input medical image is a critical step to offer highly precise and reliable diagnosis of clinical condition in human. The importance of such assurance becomes more while dealing with important organ like brain. Magnetic Resonance Imaging (MRI) is one of the most trusted mediums to investigate brain. Looking into the existing trends of investigating brain MRI, it was observed that researchers are more prone to investigate advanced problems e.g. segmentation, localization, classification, etc considering image dataset. There is less work carried out towards image preprocessing that potential affects the later stage of diagnosing. Therefore, this paper introduces a novel model of integrated image enhancement algorithm that is capable of solving different and discrete problems of performing image pre-processing for offering highly improved and enhanced brain MRI. The comparative outcomes exhibit the advantage of its simplistic implemetation strategy.