Claim Missing Document
Check
Articles

Found 2 Documents
Search

Four-leg active power filter control with SUI-PI controller Mohamed M. El-sotouhy; Ahmed A. Mansour; Mostafa I. Marei; Aziza M. Zaki; Ahmed A. EL-Sattar
International Journal of Electrical and Computer Engineering (IJECE) Vol 11, No 4: August 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v11i4.pp2768-2778

Abstract

Four-leg active power filter is considered one of the greatest vital active filters that are frequently used in industrial applications, especially those that need to be controlled in each individual phase. Also, to control the neutral current that created because of a lot of unbalanced and non-linear loads. In this paper, the used active filter was controlled by a proposed control method which can achieve simplicity and intelligence at the same time. The novelty of this paper is using the proposed controller with Four-leg active power filter. This controller relies on instantaneous reactive power theory, which used to create the required currents that are injected into the network via the used active filter to remove the problems created by unbalanced and non-linear loads. It is also maintained that the current source a pure sinusoidal wave. The system is implemented on MATLAB/Simulink. The simulation results proved the preference of the proposed controller than the conventional proportional-integration controller, where it reduced the percentage of total harmonic distortion for the current source.
Design and performance evaluation of a PV interface system based on inductive power transfer Ahmed Ragab; Mostafa I. Marei; Mohamed Mokhtar; Ahmed Abdelsattar
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 1: March 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v12.i1.pp364-373

Abstract

This paper presents a photovoltaic (PV) based battery charger utilizing a wireless power transfer (WPT) interface system. The double-sided inductor-capacitor-capacitor (LCC) compensation network is utilized for the inductive power transfer (IPT) system. Because of nonlinear characteristics of the PV, the maximum power point tracking (MPPT) is achieved by controlling the phase displacement angle or the pulse width of the quasi-square pulse inverter connected to the transmitting coil of the IPT system. As a result, the power transferred to the secondary-side, which is connected to a battery bank, is regulated. The IPT-based PV interface system is designed to achieve zero voltage switching (ZVS) in the primary side at rated conditions to minimize the switching loss. Extensive simulation studies are carried out using EMTDC/PSCAD software to investigate the dynamic performance of the proposed IPT-based PV interface system.