Claim Missing Document
Check
Articles

Found 2 Documents
Search

Fixed-time observer-based distributed secondary voltage and frequency control of islanded AC microgrids Mohamed Ghazzali; Mohamed Haloua; Fouad Giri
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 5: October 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (912.546 KB) | DOI: 10.11591/ijece.v10i5.pp4522-4533

Abstract

This paper deals with the problem of voltage and frequency control of distributed generators (DGs) in AC islanded microgrids. The main motivation of this work is to obviate the shortcomings of conventional centralized and distributed control of micro-grids by providing a better alternative control strategy with better control performance than state-of-the art approaches. A distributed secondary control protocol based on a novel fixed-time observer-based feedback control method is designed for fixed-time frequency and voltage reference tracking and disturbance rejection. Compared to the existing secondary microgrid controllers, the proposed control strategy ensures frequency and voltage reference tracking and disturbance rejection before the desired fixed-time despite the microgrid initial conditions, parameters uncertainties and the unknown disturbances. Also, the controllers design and tuning is simple, straightfor-ward and model-free.i.e, the knowledge of the microgrid parameters, topology, loads or transmission lines impedance are not needed in the design procedure. The use of distributed control approach enhances the reliability of the system by making the control system geographically distributed along with the power sources, by using the neighboring DGs informations instead of the DG’s local informations only and by cooperatively rejecting external disturbances and maintaining the frequency and the voltage at their reference values at any point of the microgrid. The efficiency of the proposed approach is verified by comparing its performance in reference tracking and its robustness to load power variations to some of the works in literature that addressed distributed secondary voltage and frequency control.
Fixed-time control of voltage dynamics of three-phase voltage source inverters with LC output filter Mohamed Ghazzali; Mohamed Haloua; Fouad Giri
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 13, No 3: September 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v13.i3.pp1843-1853

Abstract

This paper puts forward a fixed-time cascade voltage control system for threephase voltage source inverters (VSIs) with LC output filter.First, a feedforward decoupling mechanism is used to elminate the dependency between the d-q parts of the control system. Then, proportional-integral (PI) regulators are used for current control in the inner loop. The current reference is provided by a novel VSI control technique developed for fixed-time voltage regulation and reference tracking. The approach suggested in this work tracks and maintains the voltage magnitude at its normalized value in a finite-time and before a maximum settling-time fixed in advance and independent of the system’s initial state. The voltage controller also maintains current stability by providing a smoother and smaller current reference. A comparative study with VSI conventional PI control for linear, nonlinear and unbalanced loads confirms the theoretical results.