Malligunta Kiran Kumar
Koneru Lakshmaiah Education Foundation

Published : 8 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : International Journal of Electrical and Computer Engineering

Variable frequency drive optimization using torque ripple control and self-Tuning PI controller with PSO Mudundi Rekha; Malligunta Kiran Kumar
International Journal of Electrical and Computer Engineering (IJECE) Vol 9, No 2: April 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1147.727 KB) | DOI: 10.11591/ijece.v9i2.pp802-814

Abstract

Drive’s output power must be restricted for the prevention of stresses over higher components in the input power system while utilizing a three-phase Variable Frequency Drive (VFD) which has powered from a single-phase AC source. To resolve this problem, we introduced a novel motor q-axis current (M-QAC) with torque ripple control (TRC) of an induction motor and self-tuning PI controller with particle swarm optimization (STP-PSO) for mitigating the stress over induction motor by the torque ripple elimination and controlling. Our proposed approach has an information related to the different parts stresses of the VFD which includes the terminal block and the diodes in the input side, DC bus capacitors, torque ripple, harmonics in the current and active performance for sudden changes in the speed and load. Our proposed model is simulated in MATLAB/Simulink environment. In this  paper the standard dc-bus voltage ripple-based fold- back, q-axis average current fold-back and q-axis ripple current fold-back methods are utilized for the comparative analysis. Also the comparative analysis of proposed M-QAC, TRC and STP-PSO methodologies are provide with respect to steady-state values of peak-to-peak dc voltage (Vdc), peak-to-peak input current (IINPUT), input RMS current (IRMS), motor speed and the output power. Extensive simulated performance show that the STP-PSO obtained superior results over conventional standard dc-bus voltage ripple-based fold-back method, M-QAC and TRC schemes.
Comparison of one and two time constant models for lithium ion battery B. V. Rajanna; Malligunta Kiran Kumar
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 1: February 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (793.458 KB) | DOI: 10.11591/ijece.v10i1.pp670-680

Abstract

The fast and accurate modeling topologies are very much essential for power train electrification. The importance of thermal effect is very important in any electrochemical systems and must be considered in battery models because temperature factor has highest importance in transport phenomena and chemical kinetics. The dynamic performance of the lithium ion battery is discussed here and a suitable electrical equivalent circuit is developed to study its response for sudden changes in the output. An effective lithium cell simulation model with thermal dependence is presented in this paper. One series resistor, one voltage source and a single RC block form the proposed equivalent circuit model. The 1 RC and 2 RC Lithium ion battery models are commonly used in the literature are studied and compared. The simulation of Lithium-ion battery 1RC and 2 RC Models are performed by using Matlab/Simulink Software. The simulation results in his paper shows that Lithium-ion battery 1 RC model has more maximum output error of 0.42% than 2 RC Lithium-ion battery model in constant current condition and the maximum output error of 1 RC Lithium-ion battery model is 0.18% more than 2 RC Lithium-ion battery model in UDDS Cycle condition. The simulation results also show that in both simple and complex discharging modes, the error in output is much improved in 2 RC lithium ion battery model when compared to 1 RC Lithium-ion battery model. Thus the paper shows for general applications like in portable electronic design like laptops, Lithium-ion battery 1 RC model is the preferred choice and for automotive and space design applications, Lithium-ion 2 RC model is the preferred choice. In this paper, these simulation results for 1 RC and 2 RC Lithium-ion battery models will be very much useful in the application of practical Lithium-ion battery management systems for electric vehicle applications.