Yaowarat Sirisathitkul
Walailak University

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Comparative analysis of Tesseract and Google Cloud Vision for Thai vehicle registration certificate Karanrat Thammarak; Prateep Kongkla; Yaowarat Sirisathitkul; Sarun Intakosum
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 2: April 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i2.pp1849-1858

Abstract

Optical character recognition (OCR) is a technology to digitize a paper-based document to digital form. This research studies the extraction of the characters from a Thai vehicle registration certificate via a Google Cloud Vision API and a Tesseract OCR. The recognition performance of both OCR APIs is also examined. The 84 color image files comprised three image sizes/resolutions and five image characteristics. For suitable image type comparison, the greyscale and binary image are converted from color images. Furthermore, the three pre-processing techniques, sharpening, contrast adjustment, and brightness adjustment, are also applied to enhance the quality of image before applying the two OCR APIs. The recognition performance was evaluated in terms of accuracy and readability. The results showed that the Google Cloud Vision API works well for the Thai vehicle registration certificate with an accuracy of 84.43%, whereas the Tesseract OCR showed an accuracy of 47.02%. The highest accuracy came from the color image with 1024×768 px, 300dpi, and using sharpening and brightness adjustment as pre-processing techniques. In terms of readability, the Google Cloud Vision API has more readability than the Tesseract. The proposed conditions facilitate the possibility of the implementation for Thai vehicle registration certificate recognition system.
Smart scientific instruments based on smartphones: a brief review Chitnarong Sirisathitkul; Yaowarat Sirisathitkul
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 1: February 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v13i1.pp651-657

Abstract

Smartphone has gone beyond a communication hub to be a measurement device itself, thanks to various built-in sensors. This article reviewed achievements in transforming ubiquitous smartphones into cost-effective scientific instruments for educational laboratories, environmental studies, point-of-care diagnostics, home-based health monitoring, and rehabilitation. Magnetic fields were precisely measured by built-in magnetometers, leading to demonstrations for engineering and medical applications. The smartphone-based joint-angle measurement was a viable alternative to traditional goniometers. Characterizations of optical signals captured by cameras led to portable spectrophotometers and colorimeters for both educational and practical uses. Interestingly, smartphones became a platform for high-resolution microscopes and fluorescence microscopes were developed with add-on components. These smart instruments become even more attractive options in the pandemic period with limited facility and laboratory access.