A. F. Z. Abidin
Universiti Teknikal Malaysia Melaka

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : International Journal of Electrical and Computer Engineering

Optimization of Modified Sliding Mode Controller for an Electro-hydraulic Actuator System with Mismatched Disturbance Siti Marhainis Othman; M. F. Rahmat; S. M. Rozali; Zulfatman Has; A. F. Z. Abidin
International Journal of Electrical and Computer Engineering (IJECE) Vol 8, No 4: August 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (621.833 KB) | DOI: 10.11591/ijece.v8i4.pp2148-2156

Abstract

This paper presents the design of the modified sliding mode controller (MSMC) for the purpose of tracking the nonlinear system with mismatched disturbance. Provided that the performance of the designed controller depends on the value of control parameters, gravitational search algorithm (GSA), and particle swarm optimization (PSO) techniques are used to optimize these parameters in order to achieve a predefined system’s performance. In respect of system’s performance, it is evaluated based on the tracking error present between reference inputs transferred to the system and the system output. This is followed by verification of the efficiency of the designed controller in simulation environment under various values, with and without the inclusion of external disturbance. It can be seen from the simulation results that the MSMC with PSO exhibits a better performance in comparison to the performance of the similar controller with GSA in terms of output response and tracking error.
Pneumatic positioning control system using constrained model predictive controller: Experimental repeatability test Siti Fatimah Sulaiman; M. F. Rahmat; Ahmad Athif Faudzi; Khairuddin Osman; S. I. Samsudin; A. F. Z. Abidin; Noor Asyikin Sulaiman
International Journal of Electrical and Computer Engineering (IJECE) Vol 11, No 5: October 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v11i5.pp3913-3923

Abstract

Most of the controllers that were proposed to control the pneumatic positioning system did not consider the limitations or constraints of the system in their algorithms. Non-compliance with the prescribed system constraints may damage the pneumatic components and adversely affect its positioning accuracy, especially when the system is controlled in real-time environment. Model predictive controller (MPC) is one of the predictive controllers that is able to consider the constraint of the system in its algorithm. Therefore, constrained MPC (CMPC) was proposed in this study to improve the accuracy of pneumatic positioning system while considering the constraints of the system. The mathematical model of pneumatic system was determined by system identification technique and the control signal to the valves were considered as the constraints of the pneumatic system when developing the controller. In order to verify the accuracy and reliability of CMPC, repetitive experiments on the CMPC strategy was implemented. The existing predictive controller, that was used to control the pneumatic system such as predictive functional control (PFC), was also compared. The experimental results revealed that CMPC effectively improved the position accuracy of the pneumatic system compared to PFC strategy. However, CMPC not capable to provide a fast response as PFC.