Ahmad Athif Faudzi
Universiti Teknologi Malaysia

Published : 4 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 4 Documents
Search

Pneumatic positioning control system using constrained model predictive controller: Experimental repeatability test Siti Fatimah Sulaiman; M. F. Rahmat; Ahmad Athif Faudzi; Khairuddin Osman; S. I. Samsudin; A. F. Z. Abidin; Noor Asyikin Sulaiman
International Journal of Electrical and Computer Engineering (IJECE) Vol 11, No 5: October 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v11i5.pp3913-3923

Abstract

Most of the controllers that were proposed to control the pneumatic positioning system did not consider the limitations or constraints of the system in their algorithms. Non-compliance with the prescribed system constraints may damage the pneumatic components and adversely affect its positioning accuracy, especially when the system is controlled in real-time environment. Model predictive controller (MPC) is one of the predictive controllers that is able to consider the constraint of the system in its algorithm. Therefore, constrained MPC (CMPC) was proposed in this study to improve the accuracy of pneumatic positioning system while considering the constraints of the system. The mathematical model of pneumatic system was determined by system identification technique and the control signal to the valves were considered as the constraints of the pneumatic system when developing the controller. In order to verify the accuracy and reliability of CMPC, repetitive experiments on the CMPC strategy was implemented. The existing predictive controller, that was used to control the pneumatic system such as predictive functional control (PFC), was also compared. The experimental results revealed that CMPC effectively improved the position accuracy of the pneumatic system compared to PFC strategy. However, CMPC not capable to provide a fast response as PFC.
IMU sensor-based data glove for finger joint measurement Muhammad Ajwad Wa’ie Hazman; Ili Najaa Aimi Mohd Nordin; Faridah Hanim Mohd Noh; Nurulaqilla Khamis; M. R. M. Razif; Ahmad Athif Faudzi; Asyikin Sasha Mohd Hanif
Indonesian Journal of Electrical Engineering and Computer Science Vol 20, No 1: October 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v20.i1.pp82-88

Abstract

The methods used to quantify finger range of motion significantly influence how hand disability is reported. To date, the accuracy of sensors being utilized in data gloves from the literature has been ascertained yet need further analysis. This paper presents an inertial measurement unit sensor-based data glove for finger joint measurement developed for collecting a range of motion data of distal interphalangeal, proximal interphalangeal and metacarpophalangeal finger joints of an index finger. In this study, three inertial measurement sensors, MPU-6050 and two flexible bend sensors which are capable to detect angle displacement were attached to the distal interphalangeal, proximal interphalangeal and metacarpophalangeal finger joint points on the glove. The data taken from inertial measurement unit sensors and flexible bend sensors were acquired using Arduino and MATLAB software interface. The data obtained were compared with the reference data measured from goniometer to allow for accurate comparative measurement. The percentage of error resulted from MPU-6050 sensor unit were ranged from 0.81 % to 5.41 % were very low which indicates high accuracy when compared with the measurements obtained using goniometer. On the other hand, flexible bend sensor shows low accuracy (11.11 % to 19.35 % error). In conclusion, the inertial measurement unit sensor-based data glove using MPU-6050 sensors can be a reliable solution for tracking the progress of finger rehabilitation exercises. In order to motivate patients to adhere to the therapy exercises, interactive rehabilitation game will be developed in the future incorporating  MPU-6050 sensors on all five fingers.
Enhancement in pneumatic positioning system using nonlinear gain constrained model predictive controller: experimental validation Siti Fatimah Sulaiman; M. F. Rahmat; Ahmad Athif Faudzi; Khairuddin Osman; N. H. Sunar
Indonesian Journal of Electrical Engineering and Computer Science Vol 23, No 3: September 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v23.i3.pp1385-1397

Abstract

The issues of inaccurate positioning control have made an industrial use of pneumatic actuator remains restricted to certain applications only. Non-compliance with system limits and properly control the operating system may also degrade the performance of pneumatic positioning systems. This study proposed a new approach to enhance pneumatic positioning system while considering the constraints of system. Firstly, a mathematical model that represented the pneumatic system was determined by system identification approach. Secondly, model predictive controller (MPC) was developed as a primary controller to control the pneumatic positioning system, which took into account the constraints of the system. Next, to enhance the performance of the overall system, nonlinear gain function was incorporated within the MPC algorithm. Finally, the performances were compared with other control methods such as constrained MPC (CMPC), proportional-integral (PI), and predictive functional control with observer (PFC-O). The validation based on real-time experimental results for 100 mm positioning control revealed that the incorporation of nonlinear gain within the MPC algorithm improved 21.03% and 2.69% of the speed response given by CMPC and PFC-O, and reduced 100% of the overshoot given by CMPC and PI controller; thus, providing fast and accurate pneumatic positioning control system.
Two-chambers soft actuator bending and rotational properties for underwater application Muhammad Rusydi Muhammad Razif; Ahmad Athif Faudzi; Ili Najaa Aimi Mohd Nordin; Tariq Rehman; Dyah Ekashanti Octorina Dewi
Indonesian Journal of Electrical Engineering and Computer Science Vol 16, No 2: November 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v16.i2.pp669-677

Abstract

This paper presents a study on bending and rotational properties of two-chambers soft actuator for underwater application. Previous study demonstrated the actuator characteristics required to optimize the bending performance and its potential to perform underwater because of the actuator material. However, there is less study of the actuator performance underwater as well as how the actuator tips rotating during actuator bending motion. In this paper, three tests have been proposed which are comparisons of bending angle simulation and experiment in air environment, bending angle performance in air and underwater environment as well as rotational angle of actuator tip in air environment. The bending angle of soft actuator is measured based on displacement in horizontal and vertical axis and for rotational angle, gyro sensor has been used. Based on the analysis, it is proven that the fabricated soft actuator performs almost similar trend to the simulation. It is also demonstrated that the actuator performs almost double bending motion underwater environment compared to in air environment at the same pressure, and the actuator is able to rotate 90º in air environment with the supplied pressure 52 kPa.