Claim Missing Document
Check
Articles

Found 2 Documents
Search

Implementasi Algoritma Synthetic Minority Over-Sampling Technique untuk Menangani Ketidakseimbangan Kelas pada Dataset Klasifikasi Mulia Sulistiyono; Yoga Pristyanto; Sumarni Adi; Gagah Gumelar
Sistemasi: Jurnal Sistem Informasi Vol 10, No 2 (2021): Sistemasi: Jurnal Sistem Informasi
Publisher : Program Studi Sistem Informasi Fakultas Teknik dan Ilmu Komputer

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (733.264 KB) | DOI: 10.32520/stmsi.v10i2.1303

Abstract

AbstrakPada penelitian ini dilakukan penangganan ketidakseimbangan kelas terhadap kelas minoritas menggunakan teknik resampling yaitu oversampling. Algoritma oversampling yang digunakan adalah Synthetic Minority Over-sampling Technique (SMOTE). Hasil dari penelitian ini dibandingkan dengan hasil klasifikasi tanpa resampling. Uji evaluasi yang digunakan ialah akurasi, Geometric Mean (g-mean), dan Confussion Matrix (CM). Penanganan  distribusi  kelas yang  tidak  seimbang  pada  dataset menggunakan algoritma SMOTE dapat meningkatkan nilai akurasi maupun g-mean pada algoritma Naïve Bayes, SVM, KNN dan Decision Tree. Hal tersebut menunjukkan bahwa proses penanganan terhadap distribusi kelas yang tidak seimbang pada tahap pra-pemrosesan data memberikan pengaruh terhadap nilai akurasi maupun g-mean algoritma Naïve Bayes, SVM, KNN dan Decision Tree. Pada scenario percobaan yang telah dilakukan algoritma Naïve Bayes memiliki akurasi paling baik 96,43 %, SVM dengan 99,02 %, KNN dengan 97,29 % dan  Decision Tree dengan nilai 97,29 %  pada dataset ecoli 15,8 setelah dilakukan SMOTE dengan 10 fold cross validation. Sedangkan memiliki nilai G-mean paling baik 96,42 % untuk algoritma Naïve Bayes, SVM dengan 99,37 %, KNN dengan 99,53 % dan Decision Tree dengan nilai 96,29 % pada dataset ecoli 15,8 setelah dilakukan SMOTE dengan 10 fold cross validation.Kata Kunci : Data Mining, Klasifikasi, Imbalance Ratio (IR), Oversampling, Synthetic Minority Over-sampling Technique (SMOTE)AbstractIn this research, the subscriber of class imbalance to the minority class was carried out using a resampling technique, namely oversampling. The oversampling algorithm used is Synthetic Minority Over-sampling Technique (SMOTE). The results of this study were compared with the results of the classification without resampling. The evaluation tests used are accuracy, Geometric Mean (g-mean), and Confusion Matrix (CM). Handling the unbalanced class distribution on the dataset using the SMOTE algorithm can increase the accuracy and g-mean values of the Naïve Bayes, SVM, KNN and Decision Tree algorithms. This shows that the handling process of the unbalanced class distribution at the pre-processing stage has an effect on the accuracy and g-mean values of the Naïve Bayes, SVM, KNN and Decision Tree algorithms. In the experimental scenario that has been carried out the Naïve Bayes algorithm has the best accuracy of 96.43%, SVM with 99.02%, KNN with 97.29% and Decision Tree with a value of 97.29% on the ecoli dataset of 15.8 after SMOTE with 10 fold cross validation. Meanwhile, it has the best G-mean value of 96.42% for the Naïve Bayes algorithm, SVM with 99.37%, KNN with 99.53% and Decision Tree with a value of 96.29% in the ecoli dataset of 15.8 after SMOTE with 10 fold cross validation. Keywords: Data Mining, Classification, Imbalance Ratio (IR), Oversampling, Synthetic Minority Over-sampling Technique (SMOTE)
Klasifikasi Data NAP (Nota Analisis Pembiayaan) untuk Prediksi Tingkat Keamanan Pemberian Kredit (Studi Kasus : Bank Syariah Mandiri Cabang Luwuk Sulawesi Tengah) Sumarni Adi; Edi Winarko
IJCCS (Indonesian Journal of Computing and Cybernetics Systems) Vol 9, No 1 (2015): January
Publisher : IndoCEISS in colaboration with Universitas Gadjah Mada, Indonesia.

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijccs.6635

Abstract

AbstrakSetiap bulannya bank syariah mandiri cabang luwuk menerima proposal kredit (NAP) dari nasabah dalam jumlah yang terus meningkat dan perlu respon yang cepat. Dengan demikian, perlu dikembangkan sistem untuk melakukan data mining dari tumpukan data tersebut yang akan digunakan untuk kepentingan tertentu, salah satunya adalah untuk menganalisis resiko pemberian kredit.Teknik data mining digunakan dalam penelitian ini untuk klasifikasi tingkat keamanan pemberian kredit dengan menerapakan algoritma Naïve Bayes Classificatio. Naive bayes classifier merupakan pendekatan yang mengacu pada teorema Bayes yang menkombinasikan pengetahuan sebelumnya dengan pengetahuan baru, sehingga merupakan salah satu algoritma klasifikasi yang sederhana namun memiliki akurasi tinggi. Sebelum dilakukan klasifikasi, data debitur melalui preprocessing. Kemudian dari preprocessing ini dilakukan klasifikasi dengan naive bayes classifier, sehingga menghasilkan model probabilitas klasifikasi untuk prediksi kelas pada debitur selanjutnya. Teknik pengujian akurasi model diukur menggunakan boostrap, dan menunjukkan bahwa nilai akurasi terkecil 80% dihasilkan pada sampel data 100, dan menghasilkan nilai akurasi terbesar 98,66% pada sampel data 463. Kata kunci— akurasi, naive bayes, data mining, klasifikasi, preprocessing, NAP AbstractEvery month the Mandiri Syariah Bank Branch Office of Luwuk receives a very large number of proposal credit. Thus, the system should be developed to perform data mining of the heap data to be used for specific purpose, one of which is for the risk analysis of credit allowance. Data mining techniques used in this study for classification level prediction of credit allowance by applying a naïve Bayes Classification algorithm . Naive bayes classifier is an approach that refers to the bayes theorem, is a combination of prior knowledge with new knowledge. So that is one of the classification algorithm is simple but has a high accuracy. Prior to classification, data of debitur has been through a preprocessing. Then the weight is to perform classification with naive bayes classifier. After the data is classified, so produce probabilitas of model classification for prediction class to next debitur.       Testing techniques the accuracy of the model was measured by bosstrap, and shows that the smallest value of accuracy is 80% produced in the 100 data sample, and the largest value of accuracy 98,66% on a data sample of 463. Keywords— accuracy, naive bayes, data mining, classification, preprocessing, NAP