Hoang Van Ngoc
Thu Dau Mot University

Published : 4 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : International Journal of Electrical and Computer Engineering

Using CaCO3-doped package to improve correlated color temperature uniformity of white light-emitting diodes My Hanh Nguyen Thi; Nguyen Thi Phuong Loan; Thuc Minh Bui; Hoang Van Ngoc
International Journal of Electrical and Computer Engineering (IJECE) Vol 11, No 6: December 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v11i6.pp4817-4824

Abstract

The white light-emitting diode (WLED) has been the most advance lighting method currently, however, the fabrication process of this configuration still has drawbacks which negatively affect its color quality. This research was conducted to provide a method for WLED’s lighting output enhancement. Since CaCO3 particles are excellent for thermal stability enhancement, especially when being combined with an adhesive substance, we decided to integrate CO3 particles into resin matrix such as melamine formaldehyde (MF) and investigate their influences on the optical properties, including color uniformity and lumen output, of the WLED. The results showed that CaCO3 and MF resin are beneficial to the light scattering efficiency, which results in higher luminous flux and chromatic quality for WLED packages. In addition to that, the appropriate amounts of MF resin and CaCO3 for reaching the best lumen efficiency and color quality are figured out at 1% and 10%, respectively. Moreover, another advantage of using MF resin and CaCO3 for fabricating WLEDs is cost effectiveness. Hence, it has turned out that CaCO3 and MF resins can be potential materials for next high-quality WLED generations.
Enhancing light scattering effect of white LEDs with ZnO nanostructures My Hanh Nguyen Thi; Nguyen Thi Phuong Loan; Hoang Van Ngoc
International Journal of Electrical and Computer Engineering (IJECE) Vol 11, No 5: October 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v11i5.pp3838-3843

Abstract

Pc-LEDs, the lighting method that blends blue LED light with yellow light from phosphor to discharge white radiation, is one of the most advance known for high lumen output. However, pc-LEDs has inferior due to angular CCT deviation, which prevent pc-LEDs from reaching better performance. As a result, this research is conducted to address the need of pc-LEDs development by introducing a configuration doped with ZnO nanoparticles. The finite-difference time-domain (FDTD) method and the phosphor layer containing ZnO were applied in the experiments. The effect of ZnO-filled on the performance of color quality pc-LEDs is confirmed through calculated results. In particular, the uniformity of scattered light is improved with the presence of ZnO. In addition, ZnO particles also minimize the deviation of color temperature and enhance the color quality. Although there is a small decline in lumen output to achieve better color temperature uniformity, however, with suitable concentrations such as 0.25% N-ZnO, 0.25% S-ZnO, and 0. 75% R-ZnO, the decline is acceptable. The research on ZnO pc-LEDs demonstrates that this affordable and simple configuration can improve lighting properties and create other directions to enhance white light