Claim Missing Document
Check
Articles

Found 2 Documents
Search

Comparative analysis of the performance of various active queue management techniques to varying wireless network conditions Okokpujie Kennedy; Emmanuel Chukwu; Olamilekan Shobayo; Etinosa Noma-Osaghae; Imhade Okokpujie; Modupe Odusami
International Journal of Electrical and Computer Engineering (IJECE) Vol 9, No 1: February 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (873.805 KB) | DOI: 10.11591/ijece.v9i1.pp359-368

Abstract

This paper demonstrates the robustness of active queue management techniques to varying load, link capacity and propagation delay in a wireless environment. The performances of four standard   controllers used in Transmission Control Protocol/Active Queue Management (TCP/AQM) systems were compared. The active queue management controllers were the Fixed-Parameter Proportional Integral (PI), Random Early Detection (RED), Self-Tuning Regulator (STR) and the Model Predictive Control (MPC). The robustness of the congestion control algorithm of each technique was documented by simulating the varying conditions using MATLAB® and Simulink® software. From the results obtained, the MPC controller gives the best result in terms of response time and controllability in a wireless network with varying link capacity and propagation delay. Thus, the MPC controller is the best bet when adaptive algorithms are to be employed in a wireless network environment. The MPC controller can also be recommended for heterogeneous networks where the network load cannot be estimated.
A systematic mapping study of performance analysis and modelling of cloud systems and applications Isaac Odun-Ayo; Toro-Abasi Williams; Modupe Odusami; Jamaiah Yahaya
International Journal of Electrical and Computer Engineering (IJECE) Vol 11, No 2: April 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v11i2.pp1839-1848

Abstract

Cloud computing is a paradigm that uses utility-driven models in providing dynamic services to clients at all levels. Performance analysis and modelling is essential because of service level agreement guarantees. Studies on performance analysis and modelling are increasing in a productive manner on the cloud landscape on issues like virtual machines and data storage. The objective of this study is to conduct a systematic mapping study of performance analysis and modelling of cloud systems and applications. A systematic mapping study is useful in visualization and summarizing the research carried in an area of interest. The systematic study provided an overview of studies on this subject by using a structure, based on categorization. The results are presented in terms of research such as evaluation and solution, and contribution such as tools and method utilized. The results showed that there were more discussions on optimization in relation to tool, method and process with 6.42%, 14.29% and 7.62% respectively. In addition, analysis based on designs in terms of model had 14.29% and publication relating to optimization in terms of evaluation research had 9.77%, validation 7.52%, experience 3.01%, and solution 10.51%. Research gaps were identified and should motivate researchers in pursuing further research directions