Md. Ariful Islam Arif
Daffodil International University

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Prediction of addiction to drugs and alcohol using machine learning: A case study on Bangladeshi population Md. Ariful Islam Arif; Saiful Islam Sany; Farah Sharmin; Md. Sadekur Rahman; Md. Tarek Habib
International Journal of Electrical and Computer Engineering (IJECE) Vol 11, No 5: October 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v11i5.pp4471-4480

Abstract

Nowadays addiction to drugs and alcohol has become a significant threat to the youth of the society as Bangladesh’s population. So, being a conscientious member of society, we must go ahead to prevent these young minds from life-threatening addiction. In this paper, we approach a machinelearning-based way to forecast the risk of becoming addicted to drugs using machine-learning algorithms. First, we find some significant factors for addiction by talking to doctors, drug-addicted people, and read relevant articles and write-ups. Then we collect data from both addicted and nonaddicted people. After preprocessing the data set, we apply nine conspicuous machine learning algorithms, namely k-nearest neighbors, logistic regression, SVM, naïve bayes, classification, and regression trees, random forest, multilayer perception, adaptive boosting, and gradient boosting machine on our processed data set and measure the performances of each of these classifiers in terms of some prominent performance metrics. Logistic regression is found outperforming all other classifiers in terms of all metrics used by attaining an accuracy approaching 97.91%. On the contrary, CART shows poor results of an accuracy approaching 59.37% after applying principal component analysis.
A predictive analysis framework of heart disease using machine learning approaches Shourav Molla; F. M. Javed Mehedi Shamrat; Raisul Islam Rafi; Umme Umaima; Md. Ariful Islam Arif; Shahed Hossain; Imran Mahmud
Bulletin of Electrical Engineering and Informatics Vol 11, No 5: October 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v11i5.3942

Abstract

Heart diseaseis among the leading causes for death globally. Thus, early identification and treatment are indispensable to prevent the disease. In this work, we propose a framework based on machine learning algorithms to tackle such problems through the identification of risk variables associated to this disease. To ensure the success of our proposed model, influential data pre-processing and data transformation strategies are used to generate accurate data for the training model that utilizes the five most popular datasets (Hungarian, Stat log, Switzerland, Long Beach VA, and Cleveland) from UCI. The univariate feature selection technique is applied to identify essential features and during the training phase, classifiers, namely extreme gradient boosting (XGBoost), support vector machine (SVM), random forest (RF), gradient boosting (GB), and decision tree (DT), are deployed. Subsequently, various performance evaluations are measured to demonstrate accurate predictions using the introduced algorithms. The inclusion of Univariate results indicated that the DT classifier achieves a comparatively higher accuracy of around 97.75% than others. Thus, a machine learning approach is recognize, that can predict heart disease with high accuracy. Furthermore, the 10 attributes chosen are used to analyze the model's outcomes explainability, indicating which attributes are more significant in the model's outcome.