Norhashimah Mohd Saad
Universiti Teknikal Malaysia Melaka

Published : 7 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Indonesian Journal of Electrical Engineering and Computer Science

Automated brain tumor segmentation and classification for MRI analysis system Norhashimah Mohd Saad; Muhamad Faizal Yaakub; Abdul Rahim Abdullah; Nor Shahirah Mohd Noor; Nur Azmina Zainal; Wira Hidayat Mohd Saad
Indonesian Journal of Electrical Engineering and Computer Science Vol 15, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v15.i3.pp1337-1344

Abstract

This paper proposed a new analysis technique of brain tumor segmentation and classification for Fluid Attenuated Inversion Recovery (FLAIR) Magnetic Resonance Images (MRI). 25 FLAIR MRI images were collected from online database of Multimodal Brain Tumor Segmentation Challenge 2015 (BRaTS’15).  The analysis comprised four stages which are preprocessing, segmentation, feature extraction and classification. Fuzzy C-Means (FCM) was proposed for brain tumor segmentation. Mean, median, mode, standard deviation, area and perimeter were calculated and utilized as the features to be fed into a rule-based classifier. The segmentation performances were assessed based on Jaccard, Dice, False Positive and False Negative Rates (FPR and FNR). The results indicate that FCM offered high similarity indices which were 0.74 and 0.83 for Jaccard and Dice indices, respectively. The technique can possibly provide high accuracy and has the potential to detect and classify brain tumor from FLAIR MRI database.
Shape Defect Detection using Local Standard Deviation and Rule-Based Classifier for Bottle Quality Inspection Norhashimah Mohd Saad; Nor Nabilah Syazana Abdul Rahma; Abdul Rahim Abdullah; Mohd Juzaila Abd Latif
Indonesian Journal of Electrical Engineering and Computer Science Vol 8, No 1: October 2017
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v8.i1.pp107-114

Abstract

This paper presents shape analysis using Local Standard Deviation (LSD) technique to detect shape defect of the bottle for product quality inspection. The proposed analysis framework includes segmentation, feature extraction, and classification. The shape of the bottle was segmented using LSD technique in order to obtain higher enhancement at the low contrast area and low enhancement at the high contrast area. The contrast gain that was applied in Adaptive Contrast Enhancement (ACE) algorithm, was presented inversely proportional to LSD in order to detect and eliminate background noise at the bottle edge. After the segmentation process, the parameters of the bottle shape such as height, width, area, and extent were extracted and applied in classification stage. The rule-based classifier was used to classify the shape of the bottle either good or defect. The offline experimental results exhibit superior segmentation on performance with 100% accuracy for 100 sample images. This shows that the LSD could be an effective technique to monitor the product quality.