Mariagrazia Graziano
Politecnico di Torino

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Simulation and Modeling of Silicon Based Single Electron Transistor Malik Ashter Mehdy; Mariagrazia Graziano; Gianluca Piccinini
International Journal of Electrical and Computer Engineering (IJECE) Vol 8, No 2: April 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (5091.252 KB) | DOI: 10.11591/ijece.v8i2.pp900-907

Abstract

In this work, we simulated and modeled silicon quantum dot based single electron transistor (SET). We simulated the device using non-equilibrium Green’s function (NEGF) formalism in transport direction coupled with Schrodinger equation in transverse directions. The characteristics of SET such as Coulomb blockade and Coulomb diamonds were observed. We also present a new efficient model to calculate the current voltage (IV) characteristics of the SET. The IV characteristic achieved from the model are very similar to those from simulations both in shape and magnitude. The proposed model is capable of reproducing the Coulomb diamond diagram in good agreement with the simulations. The model, which is based on transmission spectrum, is simple, efficient and provides insights on the physics of the device. The transmission spectrum at equilibrium is achieved from simulations and given as input to the model. The model then calculates the evolved transmission spectra at non-equilibrium conditions and evaluates the current using Landauers formula.
A Unified Approach for Performance Degradation Analysis from Transistor to Gate Level Izhar Hussain; Marco Vacca; Fabrizio Riente; Mariagrazia Graziano
International Journal of Electrical and Computer Engineering (IJECE) Vol 8, No 1: February 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (3749.268 KB) | DOI: 10.11591/ijece.v8i1.pp412-420

Abstract

In this paper, we present an extensive analysis of the performance degradation in MOSFET based circuits. The physical effects that we consider are the random dopant fluctuation (RDF), the oxide thickness fluctuation (OTF) and the Hot-carrier-Instability (HCI). The work that we propose is based on two main key points: First, the performance degradation is studied considering BULK, Silicon-On-Insulator (SOI) and Double Gate (DG) MOSFET technologies. The analysis considers technology nodes from 45nm to 11nm. For the HCI effect we consider also the time-dependent evolution of the parameters of the circuit. Second, the analysis is performed from transistor level to gate level. Models are used to evaluate the variation of transistors key parameters, and how these variation affects performance at gate level as well.The work here presented was obtained using TAMTAMS Web, an open and publicly available framework for analysis of circuits based on transistors. The use of TAMTAMS Web greatly increases the value of this work, given that the analysis can be easily extended and improved in both complexity and depth.