Seong-Yoon Shin
Kunsan National University

Published : 4 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 4 Documents
Search

A forecasting of stock trading price using time series information based on big data Soo-Tai Nam; Chan-Yong Jin; Seong-Yoon Shin
International Journal of Electrical and Computer Engineering (IJECE) Vol 11, No 3: June 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v11i3.pp2548-2554

Abstract

Big data is a large set of structured or unstructured data that can collect, store, manage, and analyze data with existing database management tools. And it means the technique of extracting value from these data and interpreting the results. Big data has three characteristics: The size of existing data and other data (volume), the speed of data generation (velocity), and the variety of information forms (variety). The time series data are obtained by collecting and recording the data generated in accordance with the flow of time. If the analysis of these time series data, found the characteristics of the data implies that feature helps to understand and analyze time series data. The concept of distance is the simplest and the most obvious in dealing with the similarities between objects. The commonly used and widely known method for measuring distance is the Euclidean distance. This study is the result of analyzing the similarity of stock price flow using 793,800 closing prices of 1,323 companies in Korea. Visual studio and Excel presented calculate the Euclidean distance using an analysis tool. We selected “000100” as a target domestic company and prepared for big data analysis. As a result of the analysis, the shortest Euclidean distance is the code “143860” company, and the calculated value is “11.147”. Therefore, based on the results of the analysis, the limitations of the study and theoretical implications are suggested.
Face Song Player According to Facial Expressions Samule Lee; Seong-Yoon Shin
International Journal of Electrical and Computer Engineering (IJECE) Vol 6, No 6: December 2016
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (290.533 KB) | DOI: 10.11591/ijece.v6i6.pp2805-2809

Abstract

Contemporary people have highly insufficient time and means of relieving their stress. Provision of a program that can solve such stress in daily life would make one’s life substantially more enjoyable. In this thesis, Face Song Player, which is a system that recognizes the facial expression of an individual and plays music that is appropriate for such person, is presented. It studies information on the facial contour lines and extracts an average, and acquires the facial shape information. MUCT DB was used as the DB for learning. For the recognition of facial expression, an algorithm was designed by using the differences in the characteristics of each of the expressions on the basis of expressionless images. Facial expression is extracted by acquiring information on the eyes, eyebrows, eyelids, mouth, lips and nasal cheeks for expressions of happiness, surprise and sorrow as well as absence of expression. There is an advantage of being able to obtain a substantial effect with very low cost through this system.
An improved post-hurricane building damaged detection method based on transfer learning Guangxing Wang; Seong-Yoon Shin; Gwanghyun Jo
Indonesian Journal of Electrical Engineering and Computer Science Vol 33, No 3: March 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v33.i3.pp1546-1556

Abstract

After a natural disaster, it is very important for the government to conduct a damaged assessment as soon as possible. Fast and accurate disaster assessment helps the government disaster relief departments allocate resources and respond quickly and effectively to minimize the losses caused by the disaster. Usually, the method of measuring disaster losses is to rely on manual field exploration and measurement, and then calculate and label the damaged buildings or land, or rely on unmanned collections to remotely collect pictures of the disaster-stricken area, and compare the original pictures to carry out the disaster annotation and calculation. These methods are time-consuming, labor-intensive, and inefficient. This paper proposes a post-hurricane building damage detection method based on transfer learning, which uses deep learning image classification algorithms to achieve post-disaster satellite image damage detection and classification, thereby improving disaster assessment efficiency and preparing for disaster relief and post-disaster reconstruction. The proposed method adopts the theory of transfer learning, establishes a disaster image detection model based on the convolutional neural network model, and uses the 2017 Hurricane Harvey data as the experimental data set. Experiments have proved that our proposed model accuracy of disaster detection reaches 97%, which is 1% higher than other models.
Cartoon single-image super-resolution approach based on generative adversarial network Guangxing Wang; Seong-Yoon Shin; Jong-Chan Kim
Indonesian Journal of Electrical Engineering and Computer Science Vol 33, No 3: March 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v33.i3.pp1557-1566

Abstract

In recent years, the study of a single image super-resolution (SISR) is crucial to improving image resolution and using hardware technology to improve image resolution. SISR is widely used in satellite remote sensing, video surveillance, and medical image processing because it mainly relies on deep learning algorithms to realize the conversion from low-resolution (LR) images to high-resolution images. It has the advantages of low cost, simple operation, and high efficiency. This paper proposes an image super-resolution method based on a generative adversarial network named text localization generative adversarial nets (TLGAN) model. The method is improved based on super-resolution generative adversarial networks (SRGAN), and the batch normalization layer is removed, which significantly reduces the computational burden of the model. In TLGAN model, we used the transfer learning method to pre-trained the model on the large dataset ImageNet, and then apply the pre-trained model to the cartoon image data set animes to achieve image super-resolution. Experimental results report that the proposed method has the advantages of fast running speed and excellent visual perception of super-resolution images compared with bicubic interpolation and SRGAN method.