Mustafa Zuhaer Nayef Al-Dabagh
Knowledge University

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Motion artifacts reduction in cardiac pulse signal acquired from video imaging Murthad Al-Yoonus; Mustafa H. Alhabib; Mustafa Zuhaer Nayef Al-Dabagh; M. F. L. Abdullah
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 6: December 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1162.675 KB) | DOI: 10.11591/ijece.v10i6.pp5687-5693

Abstract

This study examines the possibility of remotely measuring the cardiac pulse activity of a patient, which could be an alternative technique to the classical method. This type of measurement is non-invasive. However, several limitations may deteriorate the accuracy of the results, including changes in ambient illumination, motion artifacts (MA) and other interferences that may occur through video recording. The paper in hand presents a new approach as a remedy for the aforementioned problem in cardiac pulse signals extracted from facial video recordings. Partitioning provides the basis for the presented MA reduction method; the acquired signals are partitioned into two sets for each second and every partition is shifted to the mean level and then all the partitions are recombined again into one signal, which is followed by low-pass filtering for enhancement. The proposed compared with ordinary pulse oximetry Photoplethysmographic (PPG) method. The resulted correlation coefficient was found (0.957) when calculated between the results of the proposed method and the ordinary one. Experiments were implemented using a common camera by creating a dataset from 11 subjects. The ease of implementation of this method with a simple that can be used to monitor the cardiac pulse rates in both home and the clinical environments.
Automated tumor segmentation in MR brain image using fuzzy c-means clustering and seeded region methodology Mustafa Zuhaer Nayef AL-Dabagh
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 10, No 2: June 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v10.i2.pp284-290

Abstract

Automated segmentation of a tumor is still a considerably exciting research topic in the medical imaging processing field, and it plays a considerable role in forming a right diagnosis, to aid effective medical treatment. In this work, a fully automated system for segmentation of the brain tumor in MRI images is introduced. The suggested system consists of three parts: Initially, the image is pre-processed to enhance contrast, eliminate noise, and strip the skull from the image using filtering and morphological operations. Secondly, segmentation of the image happens using two techniques, fuzzy c-means clustering (FCM) and with the application of a seeded region growing algorithm (SGR). Thirdly, this method proposes a post-processing step to smooth segmentation region edges using morphological operations. The testing of the proposed system involved 233 patients, which included 287 MRI images. A comparison of the results ensued, with the manual verification of the traces performed by doctors, which ultimately proved an average Dice Coefficient of 90.13% and an average Jaccard Coefficient of 82.60% also, by comparison with traditional segmentation techniques such as FCM method. The segmentation results and quantitative data analysis demonstrates the effectiveness of the suggested system.