Nasharuddin Zainal
Universiti Kebangsaan Malaysia

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

Human Detection Framework for Automated Surveillance Systems Redwan A.K. Noaman; Mohd Alauddin Mohd Ali; Nasharuddin Zainal; Faisal Saeed
International Journal of Electrical and Computer Engineering (IJECE) Vol 6, No 2: April 2016
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (20.788 KB) | DOI: 10.11591/ijece.v6i2.pp877-886

Abstract

Vision-based systems for surveillance applications have been used widely and gained more research attention. Detecting people in an image stream is challenging because of their intra-class variability, the diversity of the backgrounds, and the conditions under which the images were acquired. Existing human detection solutions suffer in their effectiveness and efficiency. In particular, the accuracy of the existing detectors is characterized by their high false positive and negative. In addition, existing detectors are slow for online surveillance systems which lead to large delay that is not suitable for surveillance systems for real-time monitoring. In this paper, a holistic framework is proposed for enhancing the performance of human detection in surveillance system. In general, the framework includes the following stages: environment modeling, motion object detection, and human object recognition. In environment modeling, modal algorithm has been suggested for background initialization and extraction. Then for effectively classifying the motion object, edge detecting and B-spline algorithm have been used for shadow detection and removal. Then, enhanced Lucas–Kanade optical flow has been used to get the area of interest for object segmentation. Finally, to enhance the segmentation, some morphological processes were performed. In the motion object recognition stage, segmentation for each blob is performed and processed to the human detector which is a complete learning-based system for detecting and localizing objects/humans in images using mixtures of deformable part models (PFF detector). Results show enhancement in each phase of the proposed framework. These enhancements are shown in the overall performance of human detection in surveillance system.
A fast specular reflection removal based on pixels properties method Shahrizan Jamaludin; Nasharuddin Zainal; W. Mimi Diyana W. Zaki
Bulletin of Electrical Engineering and Informatics Vol 9, No 6: December 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v9i6.2524

Abstract

Iris recognition has been around for many years due to an extensive research on the uniqueness of human iris. It is well known that the iris is not similar to each other which means every human in the planet has their own iris pattern and cannot be shared. One of the main issues in iris recognition is iris segmentation. One element that can reduce the accuracy of iris segmentation is the presence of specular reflection. Another issue is the speed of specular reflection removal since the iris recognition system needs to process a lot of irises. In this paper, a specular reflection removal method was proposed to achieve a fast and accurate specular reflection removal. Some modifications were implemented on the existing pixels properties method. Based on the results, the proposed method achieved the fastest execution time, the highest segmentation accuracy and the highest SSIM compared to the other methods. This proves that the proposed method is fast and accurate to be implemented in the iris recognition systems.
Deblurring of noisy iris images in iris recognition Shahrizan Jamaludin; Nasharuddin Zainal; W Mimi Diyana W Zaki
Bulletin of Electrical Engineering and Informatics Vol 10, No 1: February 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v10i1.2467

Abstract

Iris recognition used the iris features to verify and identify the identity of human. The iris has many advantages such as stability over time, easy to use and high recognition accuracy. However, the poor quality of iris images can degrade the recognition accuracy of iris recognition system. The recognition accuracy of this system is depended on the iris pattern quality captured during the iris acquisition. The iris pattern quality can degrade due to the blurry image. Blurry image happened due to the movement during image acquisition and poor camera resolution. Due to that, a deblurring method based on the Wiener filter was proposed to improve the quality of iris pattern. This work is significant since the proposed method can enhance the quality of iris pattern in the blurry image. Based to the results, the proposed method improved the quality of iris pattern in the blurry image. Moreover, it recorded the fastest execution time to improve the quality of iris pattern compared to the other methods.