Anh Tuan Le
Ton Duc Thang University

Published : 5 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : International Journal of Electrical and Computer Engineering

The effect green YF3:ER3+,YB3+ phosphor on luminous flux and color quality of multi-chip white light-emitting diodes My Hanh Nguyen Thi; Nguyen Thi Phuong Loan; Thuc Minh Bui; Anh Tuan Le
International Journal of Electrical and Computer Engineering (IJECE) Vol 11, No 6: December 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v11i6.pp4810-4816

Abstract

The purpose of this paper is to demonstrate the advantages of the green phosphor YF3:Er3+,Yb3+ combined with multi-chip package to the enhancement of lighting efficiency of modern WLEDs. In an effort to improve the quality of WLEDs and create a new generation of lighting device, green phosphor YF3:Er3+,Yb3+ is added into the phosphor compounding of the WLED package to improve the color quality and lighting capacity. Through experiments, WLEDs with YF3:Er3+,Yb3+ green phosphor has shown improved results in lighting performance specifically in color homogeneity and light output of WLEDs in the ACCT range from 5600-7000 K. However, the color quality scale (CQS) declines gradually. Therefore, if the appropriate concentration and size of YF3:Er3+,Yb3+ are determined, the performance of MCW-LEDs will be enhanced and become more stable.
Enhancing the CRI and lumen output for the 6600 K WLED with convex-dual-layer remote phosphor geometry by applying red-emitting MGSR3SI2O8:EU2+,MN2+ phosphor Thuc Minh Bui; Nguyen Thi Phuong Loan; Phan Xuan Le; Nguyen Doan Quoc Anh; Anh Tuan Le; Le Van Tho
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 4: August 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (703.278 KB) | DOI: 10.11591/ijece.v10i4.pp3501-3507

Abstract

The traditional white LED product established with a single chip and a single phosphor results in a low color rendering index (CRI). The upgrade of LED package is comprised of two chips and one phosphor material and gives the higher CRI while keeping high luminous efficiency. Based on previous findings, the research paper performs the application of the two chips and two phosphors to enhance the color tunability of LEDs with different amounts and intensities of the two employed phosphors. Additionally, a color design model is built to serve the purpose of bettering the color fine-tuning of the white-light LED module. The maximum value of the difference between the measured CIE 1931 color coordinates and that of the simulated model is approximately 0.0063 around the 6600 K correlated color temperature (CCT). From the results, this study offers a quick approach to achieve the color fine tuning of a white-light LED module with a high CRI and luminous efficiency.
Enhance the chromatic uniformity and luminous efficiency of WLEDs with triple-layer remote phosphor structures Nguyen Thi Phuong Loan; Anh Tuan Le
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 6: December 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v10i6.pp6244-6250

Abstract

The angular color uniformity (ACU) with the ability to evaluate chromatic performance of WLED has become an important target to achieve in producing higher-quality WLEDs. This paper studies the ACU enhancing effects of novel triple-phosphor configuration in lighting devices with remote phosphor structure. Moreover, the optical influences of remote phosphor structure with three phosphor layers (TL) on WLEDs properties are calculated and compared to the dual-layer (DL) one for reference. The experiments are applied to devices at 5 distinct correlated color temperature ranging from 5600-8500 K. The results presented that DL structure attains better color rendering index (CRI) than the TL one. Meanwhile, in terms of color quality scales (CQS), TL model shows higher values at all ACCTs, compared to the DL. Moreover, the luminous flux of DL configuration is lower than that of TL structure. In addition, the diversion of color temperature depicts as D-CCT in TL structure is much better than the value in DL structure, especially at high ACCT as 8500 K, which means TL is good for chromatic uniformity of high ACCTs WLEDs. These results proved that the triple-layer structure is superior and more effective to apply for acquiring the enhancement of WLEDs package.