Anh Tuan Le
Ton Duc Thang University

Published : 5 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : TELKOMNIKA (Telecommunication Computing Electronics and Control)

The application of (Y,Gd)BO3:Tb3+ and CaGa2S4:Mn2+ phosphors to remote white light-emitting diodes Thuc Minh Bui; Nguyen Thi Phuong Loan; Phan Xuan Le; Nguyen Doan Quoc Anh; Anh Tuan Le; Le Van Tho
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 18, No 1: February 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v18i1.13713

Abstract

The remote phosphor structure is superior to the conformal phosphor and the in-cup phosphor in terms of lighting efficiency; however, managing the color quality of the remote phosphor structure has been a nuisance to the manufacturers. To address this problem, many researches were conducted and the results suggested that using dual-layer phosphor structure and triple-layer phosphor structure could improve the color quality in remote phosphor structures. The purpose of this article is to study which one between the two configurations mentioned above allows multi-chip white LEDs (WLEDs) to reach highest indexes in color rendering index (CRI), color quality scale (CQS), luminous flux (LF), and color uniformity. The color temperature of the WLEDs used for the experiments in this article is 8500 K. The result of this research shows that the triple-layer phosphor configuration has higher CRI, CQS, and LE and also able to reduce color deviation resulting in better color uniformity. This conclusion can be verified by analyzing the scattering features of the phosphor layers using the Mie-theory. Being verifiable increases the reliability of the research result and makes it a valuable reference for producing better quality WLEDs.
Improving color rendering index of WLEDs with convex-dual-layer remote phosphor geometry using red-emitting CaGa2S4:Mn2+ phosphor Nguyen Thi Phuong Loan; Anh Tuan Le
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 18, No 5: October 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v18i5.14250

Abstract

The white-light light-emitting diode (LED), a conventional illumination solution, usually consists of one chip and one phosphor layer, which leads to the insufficient color rendering index (CRI) in this configuration. To optimize the efficiency of WLED, a new LED package with 2 chips and one phosphor was proposed, this innovative configuration can yield more lights and achieve high CRI. Thus, this study aims at perfecting the color performance with the two chips and dual phosphor layers package with the proportions and densities of phosphor in the silicone constantly changed to find the best option. The white-light LED module is adjusted using a specialized color design model. The comparison results between the measured and the simulation from the color design model CIE 1931 color coordinates suggest that the highest discrepancy is about 0.0063 and is achieved at around 5600K correlated color temperature (CCT). This study’s results lay a firm path in customizing white-light LED modules that guarantee CRI and lumen output qualities.