Achmad Arwan
University of Brawijaya

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Determining Basis Test Paths Using Genetic Algorithm and J4 Achmad Arwan; Denny Sagita Rusdianto
International Journal of Electrical and Computer Engineering (IJECE) Vol 8, No 5: October 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (341.24 KB) | DOI: 10.11591/ijece.v8i5.pp3333-3340

Abstract

Basis test paths is a method that uses a graph contains nodes as a representation of codes and the lines as a sequence of code execution steps. Determination of basis test paths can be generated using a Genetic Algorithm, but the drawback was the number of iterations affect the possibility of visibility of the appropriate basis path. When the iteration is less, there is a possibility the paths do not appear all. Conversely, if the iteration is too much, all the paths have appeared in the middle of iteration. This research aims to optimize the performance of Genetic Algorithms for the generation of Basis Test Paths by determining how many iterations level corresponding to the characteristics of the code. Code metrics Node, Edge, VG, NBD, LOC were used as features to determine the number of iterations. J48 classifier was employed as a method to predict the number of iterations. There were 17 methods have selected as a data training, and 16 methods as a data test. The system was able to predict 84.5% of 58 basis paths. Efficiency test results also show that our system was able to seek Basis Paths 35% faster than the old system.