Mahmoud oukati Sadegh
University of Sistan and Baluchestan

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

Permanent Fault Location in Distribution System Using Phasor Measurement Units (PMU) in Phase Domain Ali Khaleghi; Mahmoud oukati Sadegh; Mahdi Ghazizadeh Ahsaee
International Journal of Electrical and Computer Engineering (IJECE) Vol 8, No 5: October 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1037.167 KB) | DOI: 10.11591/ijece.v8i5.pp2709-2720

Abstract

This paper proposes a new method for locating high impedance fault in distribution systems using phasor measurement units (PMUs) installed at certain locations of the system. To implement this algorithm, at first a new method is suggested for the placement of PMUs. Taking information from the units, voltage and current of the entire distribution system are calculated. Then, the two buses in which the fault has been occurred is determined, and location and type of the fault are identified. The main characteristics of the proposed method are: the use of distributed parameter line model in phase domain, considering the presence of literals, and high precision in calculating the high impedance fault location. The results obtained from simulations in EMTP-RV and MATLAB software indicate high accuracy and independence of the proposed method from the fault type, fault location and fault resistance compared to previous methods, so that the maximum observed error was less than 0.15%
The effect of load modelling on phase balancing in distribution networks using search harmony algorithm Saeid Eftekhari; Mahmoud Oukati Sadegh
International Journal of Electrical and Computer Engineering (IJECE) Vol 9, No 3: June 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1317.974 KB) | DOI: 10.11591/ijece.v9i3.pp1461-1471

Abstract

Due to the unequal loads in phases and different customer consumption, the distribution network is unbalanced. Unbalancing in the distribution network, in addition to increasing power losses, causes unbalancing in voltages and increases operating costs. To reduce this unbalancing, various methods and algorithms have been presented. In most studies and even practical projects due to lack of information about the network loads, load models such as constant power model, constant current or constant impedance are used to model the loads. Due to the changing and nonlinear behaviours of today's loads, these models cannot show results in accordance with reality. This paper while introducing an optimal phase-balancing method, discusses the effect of load modelling on phase balancing studies. In this process the re-phasing method for balancing the network and the harmony search algorithm for optimizing the phase displacement process have been used. The simulation was carried out on an unbalanced distribution network of 25 buses. The results show well the effect of this comprehensive modelling on phase balancing studies. It also shows that in the re-phasing method for balancing the network and in the absence of a real load model, the use of which model offers the closest answer to optimal solutions.
Evaluation of Synchronization and MPPT algorithms in a DFIG Wind Turbine Controlled by an Indirect Matrix Converter Ahmad Khajeh; Reza Ghazi; Mohamad Hosseini Abardeh; Mahmoud Oukati Sadegh
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 9, No 2: June 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (792.25 KB) | DOI: 10.11591/ijpeds.v9.i2.pp784-794

Abstract

Most of generators utilized in wind turbines are the Doubly-Fed Induction Generator (DFIG). Indirect matrix converter (IMC) is a candidate for substituting the traditional back-to-back converter in the future due to advantages gained by elimination of electrolytic capacitor. Starting DFIG wind turbines and synchronizing to the grid is a challenge in practice because of large inrush currents that could damage switches. Synchronizing the DFIG wind turbine controlled by the IMC is presented in this paper. Also, maximum power point tracking algorithm performance of this configuration is examined. A laboratory scale prototype of the proposed configuration is built. Experimental results have confirmed effectiveness of this configuration.