Claim Missing Document
Check
Articles

Found 3 Documents
Search

Improving collaborative filtering using lexicon-based sentiment analysis Rouhia Mohammed Sallam; Mahmoud Hussein; Hamdy M. Mousa
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 2: April 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i2.pp1744-1753

Abstract

Since data is available increasingly on the Internet, efforts are needed to develop and improve recommender systems to produce a list of possible favorite items. In this paper, we expand our work to enhance the accuracy of Arabic collaborative filtering by applying sentiment analysis to user reviews, we also addressed major problems of the current work by applying effective techniques to handle the scalability and sparsity problems. The proposed approach consists of two phases: the sentiment analysis and the recommendation phase. The sentiment analysis phase estimates sentiment scores using a special lexicon for the Arabic dataset. The item-based and singular value decomposition-based collaborative filtering are used in the second phase. Overall, our proposed approach improves the experiments’ results by reducing average of mean absolute and root mean squared errors using a large Arabic dataset consisting of 63,000 book reviews.
Arabic open information extraction system using dependency parsing Sally Mohamed Ali El-Morsy; Mahmoud Hussein; Hamdy M. Mousa
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 1: February 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i1.pp541-551

Abstract

Arabic is a Semitic language and one of the most natural languages distinguished by the richness in morphological enunciation and derivation. This special and complex nature makes extracting information from the Arabic language difficult and always needs improvement. Open information extraction systems (OIE) have been emerged and used in different languages, especially in English. However, it has almost not been used for the Arabic language. Accordingly, this paper aims to introduce an OIE system that extracts the relation tuple from Arabic web text, exploiting Arabic dependency parsing and thinking carefully about all possible text relations. Based on clause types' propositions as extractable relations and constituents' grammatical functions, the identities of corresponding clause types are established. The proposed system named Arabic open information extraction(AOIE) can extract highly scalable Arabic text relations while being domain independent. Implementing the proposed system handles the problem using supervised strategies while the system relies on unsupervised extraction strategies. Also, the system has been implemented in several domains to avoid information extraction in a specific field. The results prove that the system achieves high efficiency in extracting clauses from large amounts of text.
Context-aware recommender system for multi-user smart home Shymaa Sobhy; Eman M. Mohamed; Arabi Keshk; Mahmoud Hussein
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 3: June 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v13i3.pp3192-3203

Abstract

Smart home is one of the most important applications of the internet of things (IoT). Smart home makes life simpler, easier to control, saves energy based on user’s behavior and interaction with the home appliances. Many existing approaches have designed a smart home system using data mining algorithms. However, these approaches do not consider multiusers that exist in the same location and time (which needs a complex control). They also use centralized mining algorithm, then the system’s efficiency is reduced when datasets increase. Therefore, in this paper, we firstly build a context-aware recommender system that considers multi-user’s preferences and solves their conflicts by using unsupervised algorithms to deliver useful recommendation services. Secondly, we improve smart home’s responsive using parallel computing. The results reveal that the proposed method is better than existing approaches.