Javad Mashayekhi Fard
Islamic Azad University

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Robust Multi-Objective Control of Power System Stabilizer Using Mixed H2/H∞ and µ Analysis Javad Mashayekhi Fard
International Journal of Electrical and Computer Engineering (IJECE) Vol 8, No 6: December 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (789.586 KB) | DOI: 10.11591/ijece.v8i6.pp4800-4809

Abstract

In order to study the dynamic stability of the system, having a precise dynamic model including the energy generation units such as generators, excitation system and turbine is necessary. The aim of this paper is to design a power stabilizer for Mashhad power plant and assess its effects on the electromechanical fluctuations. Due to lack of certainty in the system, designing an optimized robust controller is crucial. In this paper, the establishment of balance between the nominal and robust performance is done by the weight functions. In the frequencies where the uncertainty is high, in order to achieve to the robust performance of the controller, μ analysis is more profound, otherwise, in order to achieve to nominal performance, robust stability, noise reduction and decrease of controlling signal, the impact of the controller H2/H∞ is more profound. The results of the simulation studies represent the advantages and effectiveness of the suggested method.
An efficient application of particle swarm optimization in model predictive control of constrained two-tank system Ahmad Kia Kojouri; Javad Mashayekhi Fard
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 4: August 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i4.pp3540-3550

Abstract

Despite all the model predictive control (MPC) based solution advantages such as a guarantee of stability, the main disadvantage such as an exponential growth of the number of the polyhedral region by increasing the prediction horizon exists. This causes the increment in computation complexity of control law. In this paper, we present the efficiency of particle swarm optimization (PSO) in optimal control of a two-tank system modeled as piecewise affine. The solution of the constrained final time-optimal control problem (CFTOC) is derived, and then the PSO algorithm is used to reduce the computational complexity of the control law and set the physical parameters of the system to improve performance simultaneously. On the other hand, a new combined algorithm based on PSO is going to be used to reduce the complexity of explicit MPC-based solution CFTOC of the two-tank system; consequently, that the number of polyhedral is minimized, and system performance is more desirable simultaneously. The proposed algorithm is applied in simulation and our desired subjects are reached. The number of control law polyhedral reduces from 42 to 10 and the liquid height in both tanks reaches the desired certain value in 189 seconds. Search time and apply control law in 25 seconds.