Yazeed Ghadi
Al Ain University of Science and Technology

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

A novel CAD system to automatically detect cancerous lung nodules using wavelet transform and SVM Ayman A. Abu Baker; Yazeed Ghadi
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 5: October 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (574.121 KB) | DOI: 10.11591/ijece.v10i5.pp4745-4751

Abstract

A novel cancerous nodules detection algorithm for computed tomography images (CT-images) is presented in this paper. CT-images are large size images with high resolution. In some cases, number of cancerous lung nodule lesions may missed by the radiologist due to fatigue. A CAD system that is proposed in this paper can help the radiologist in detecting cancerous nodules in CT- images. The proposed algorithm is divided to four stages. In the first stage, an enhancement algorithm is implement to highlight the suspicious regions. Then in the second stage, the region of interest will be detected. The adaptive SVM and wavelet transform techniques are used to reduce the detected false positive regions. This algorithm is evaluated using 60 cases (normal and cancerous cases), and it shows a high sensitivity in detecting the cancerous lung nodules with TP ration 94.5% and with FP ratio 7 cluster/image.
Cancerous lung nodule detection in computed tomography images Ayman Abu Baker; Yazeed Ghadi
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 18, No 5: October 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v18i5.15523

Abstract

Diagnosis the computed tomography images (CT-images) is one of the images that may take a lot of time in diagnosis by the radiologist and may miss some of cancerous nodules in these images. Therefore, in this paper a new novel enhancement and detection cancerous nodule algorithm is proposed to diagnose a CT-images. The novel algorithm is divided into three main stages. In first stage, suspicious regions are enhanced using modified LoG algorithm. Then in stage two, a potential cancerous nodule was detected based on visual appearance in lung. Finally, five texture features analysis algorithm is implemented to reduce number of detected FP regions. This algorithm is evaluated using 60 cases (normal and cancerous cases), and it shows a high sensitivity in detecting the cancerous lung nodules with TP ration 97% and with FP ratio 25 cluster/image.