Otman Abdoun
Abdelmalek Essaadi University

Published : 5 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 5 Documents
Search

Parallel genetic approach for routing optimization in large ad hoc networks Hala Khankhour; Otman Abdoun; Jâafar Abouchabaka
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 1: February 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i1.pp748-755

Abstract

This article presents a new approach of integrating parallelism into the genetic algorithm (GA), to solve the problem of routing in a large ad hoc network, the goal is to find the shortest path routing. Firstly, we fix the source and destination, and we use the variable-length chromosomes (routes) and their genes (nodes), in our work we have answered the following question: what is the better solution to find the shortest path: the sequential or parallel method?. All modern systems support simultaneous processes and threads, processes are instances of programs that generally run independently, for example, if you start a program, the operating system spawns a new process that runs parallel elements to other programs, within these processes, we can use threads to execute code simultaneously. Therefore, we can make the most of the available central processing unit (CPU) cores. Furthermore, the obtained results showed that our algorithm gives a much better quality of solutions. Thereafter, we propose an example of a network with 40 nodes, to study the difference between the sequential and parallel methods, then we increased the number of sensors to 100 nodes, to solve the problem of the shortest path in a large ad hoc network.
Performance analysis of the application of convolutional neural networks architectures in the agricultural diagnosis Sara Belattar; Otman Abdoun; El khatir Haimoudi
Indonesian Journal of Electrical Engineering and Computer Science Vol 27, No 1: July 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v27.i1.pp156-162

Abstract

Agriculture is an important sector for developing countries and farmers. Recently, numerous techniques for increasing agricultural productivity have been utilized. However, different issues are still encountered by farmers including various plant diseases. Plant diseases diagnoses are challenging research, and they should be analyzed and treated by detecting the diseased plant leaves. For that reason, in this paper, we develop our proposed architecture using convolutional neural networks (OP-CNN) as a computer-aided to detect and diagnose plant diseases. The proposed architecture can assist farmers in increasing both the quantity and quality of their agricultural productivity. Besides this, the OP-CNN helps to reduce disease prevalence through early detection. The performance of our proposed model is compared with other convolutional neural networks (CNN) architectures in order to validate its capability. The strawberry dataset was employed to train and test the models since the strawberry is one of the main crops in the Larache Province (Morocco). The experimental tests demonstrate that our proposed OP-CNN reaches the highest values versus DenseNet121, VGG19, and ResNet50 with 100%, 99%, 97%, and 63% respectively for classification accuracy, 100%, 100%, 98% and, 79% respectively for precision, 100%, 99%, 97%, and 63% respectively for recall, and 100%, 99%, 97%, and 58% respectively for "F" _1Score.
Intelligent system for recruitment decision making using an alternative parallel-sequential genetic algorithm Said Tkatek; Saadia Bahti; Otman Abdoun; Jaafar Abouchabaka
Indonesian Journal of Electrical Engineering and Computer Science Vol 22, No 1: April 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v22.i1.pp385-395

Abstract

The human resources (HR) manager needs effective tools to be able to move away from traditional recruitment processes to make the good decision to select the good candidates for the good posts. To do this, we deliver an intelligent recruitment decision-making method for HR, incorporating a recruitment model based on the multipack model known as the NP-hard model. The system, which is a decision support tool, often integrates a genetic approach that operates alternately in parallel and sequentially. This approach will provide the best recruiting solution to allow HR managers to make the right decision to ensure the best possible compatibility with the desired objectives. Operationally, this system can also predict the altered choice of parallel genetic algorithm (PGA) or sequential genetic algorithm (SeqGA) depending on the size of the instance and constraints of the recruiting posts to produce the quality solution in a reduced CPU time for recruiting decision-making. The results obtained in various tests confirm the performance of this intelligent system which can be used as a decision support tool for intelligently optimized recruitment.
Comparing machine learning and deep learning classifiers for enhancing agricultural productivity: case study in Larache Province, Northern Morocco Sara Belattar; Otman Abdoun; Haimoudi El Khatir
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 2: April 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v13i2.pp1689-1697

Abstract

The agriculture sector in the Tangier-Tetouan-Al-Hoceima-Region (Northern Morocco) contributes a significant percentage to the national revenue. The Larache Province is at the regional forefront in agriculture terms due to its large irrigated areas. Golden-Gogi is a biological farm located in the Larache Province, and its objective is to produce organic crops. Besides climate change, this farm suffers from biotic factors such as snails and insects. These problems cause diseases in plants, resulting in massive crop production losses. Early detection of disease and biotic factors in plants is a difficult task for farmers, but it is now possible thanks to artificial intelligence. For that reason, we aim to contribute to this Province by comparing the well-known models in machine learning (ML) and deep learning (DL) used in early plant disease detection to specify the best-classifier in terms of detecting mint plant diseases. Mint plant is a major crop on the Golden-Gogi farm, and its dataset was collected from there. As per findings, DL classifiers outperform ML classifiers in disease detection. The best-classifier is DenseNet201, with high accuracy of 94.12%. Hence, the system using DenseNet201 offers a solution for farmers of this Province in making urgent decisions to avoid mint yield losses.
Integration of evolutionary algorithm in an agent-oriented approach for an adaptive e-learning Fatima Zohra Lhafra; Otman Abdoun
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 2: April 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v13i2.pp1964-1978

Abstract

This paper describes an agent-oriented approach that aims to create learning situations by solving problems. The proposed system is designed as a multi-agent that organizes interfaces, coordinators, sources of information, and mobiles. The objective of this approach is to get learners to solve a problem that leads them to get engaged in several learning activities, chosen according to their level of knowledge and preferences in order to ensure adaptive learning and reduce the rate of learner abundance in an e-learning system. The search for learning activities procedure is based on evolutionary algorithms typically a genetic algorithm, to offer learners the optimal solution adapted to their profiles and ensure a resolution of the proposed learning problem. In terms of results, we have adopted “immigration strategies” to improve the performance of the genetic algorithm. To show the effectiveness of the proposed approach we have made a comparative study with other artificial intelligence optimization methods. We conducted a real experiment with primary school learners in order to test the effectiveness of the proposed approach and to set up its functioning. The experiment results showed a high rate of success and engagement among the learners who followed the proposed adaptive learning scenario.