Nguyen Phung Quang
Hanoi University of Science and Technology

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

On tracking control problem for polysolenoid motor model predictive approach Nguyen Hong Quang; Nguyen Phung Quang; Do Trung Hai; Nguyen Nhu Hien
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 1: February 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (513.65 KB) | DOI: 10.11591/ijece.v10i1.pp849-855

Abstract

The Polysolenoid Linear Motor (PLM) have been playing a crucial role in many industrial aspects due to its functions, in which a straight motion is provided directly without mediate mechanical actuators. Recently, with several commons on mathematic model, some control methods for PLM based on Rotational Motor have been applied, but position, velocity and current constraints which are important in real systems have been ignored. In this paper, position tracking control problem for PLM was considered under state-independent disturbances via min-max model predictive control. The proposed controller forces tracking position errors converge to small region of origin and satisfies state including position, velocity and currents constraints. Further, a numerical simulation was implemented to validate the performance of the proposed controller.
Backstepping control of two-mass system using induction motor drive fed by voltage source inverter with ideal control performance of stator current Vo Thanh Ha; Le Trong Tan; Nguyen Duc Nam; Nguyen Phung Quang
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 10, No 2: June 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (506.871 KB) | DOI: 10.11591/ijpeds.v10.i2.pp720-730

Abstract

This paper describes the design and the simulation of a non-linear controller for two-mass system using induction motor basing on the backstepping method. The aim is to control the speed actual value of load motor matching with the speed reference load motor, moreover, electrical drive’s respone ensuring the “fast, accurate and small overshoot” and reducing the resonance oscillations for two-mass system using induction motor fed by voltage source inveter with ideally control performance of stator current. Backstepping controller uses the non-linear equations of an induction motor and the linear dynamical equations of two-mass system, the Lyapunov analysis and the errors between the real and the desired values. The controller has been implemented in both simulation and hardware-in-the-loop (HIL) real-time experiments using Typhoon HIL 402 system, when the drive system operates at a stable speed (rotor flux is constant) and greater than rated speed (field weakening area). The simulation and HIL results presented the correctness and effectiveness of the controller is proposed; furthermore, compared to PI method to see the response of the system clearly.
Min Max Model Predictive Control for Polysolenoid Linear Motor Nguyen Hong Quang; Nguyen Phung Quang; Nguyen Nhu Hien; Nguyen Thanh Binh
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 9, No 4: December 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v9.i4.pp1666-1675

Abstract

The Polysolenoid Linear Motor (PLM) have been playing a crucial role in many industrial aspects because it provides a straight motion directly without mediate mechanical actuators. Some control methods for PLM based on Rotational Motor are applied to obtain several good performances, but position and velocity constraints which are important in real systems are ignored. In this paper, we analysis control problem of tracking position in PLM under state-independent disturbances via min-max model predictive control. The proposed controller brings tracking position error converge to zero and satisfies state including position and velocity and input constraints. The simulation results validity a good efficiency of the proposed controller.