Claim Missing Document
Check
Articles

Found 2 Documents
Search

Low-cost and portable automatic sheet cutter Mohd Syafiq Mispan; Ahmad Hafizzudin Mustafa; Hafez Sarkawi; Aiman Zakwan Jidin
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 5: October 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1837.368 KB) | DOI: 10.11591/ijece.v10i5.pp5139-5146

Abstract

Process automation is crucial to increase productivity, more efficient use of materials, better product quality, improved safety, etc. In small-medium enterprise (SME) businesses related to household retailing, one of the process automation needed is the measurement and cutting of the mat or sheet, made of rubber or polyvinyl chloride (PVC) materials. Most of the household retailers that selling the sheet, the process of measuring and cutting according to the customer’s requirements are manually performed using a measuring tape and scissors. These manual processes can cause inaccuracy in length, inefficient use of material, low productivity and reduce product quality. This paper presents a low cost and portable automatic sheet cutter using the Arduino development board, which is used to control the process of measuring and cutting the materials. The system uses a push-button where the user can set the required length and quantity of the sheet. Once the required information is set, the stepper motor rolls the sheet until the required length is satisfied. Subsequently, another stepper motor moves the cutter horizontally and cut the sheet. With the automatic sheet cutter, the material is cut with acceptable precision. The design of the automatic sheet cutter is low cost and portable which significantly suitable to be used by SME household retailers.
Uncertain DC-DC Zeta Converter Control in Convex Polytope Model Based on LMI Approach Hafez Sarkawi; Yoshito Ohta
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 9, No 2: June 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (494.615 KB) | DOI: 10.11591/ijpeds.v9.i2.pp829-838

Abstract

A dc-dc zeta converter is a switch mode dc-dc converter that can either step-up or step-down dc input voltage. In order to regulate the dc output voltage, a control subsystem needs to be deployed for the dc-dc zeta converter. This paper presents the dc-dc zeta converter control. Unlike conventional dc-dc zeta converter control which produces a controller based on the nominal value model, we propose a convex polytope model of the dc-dc zeta converter which takes into account parameter uncertainty. A linear matrix inequality (LMI) is formulated based on the linear quadratic regulator (LQR) problem to find the state-feedback controller for the convex polytope model. Simulation results are presented to compare the control performance between the conventional LQR and the proposed LMI based controller on the dc-dc zeta converter. Furthermore, the reduction technique of the convex polytope is proposed and its effect is investigated.