Nizar Hadi Abbas
University of Baghdad

Published : 6 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 6 Documents
Search

Speed controller design for three-phase induction motor based on dynamic adjustment grasshopper optimization algorithm Ammar Falah Algamluoli; Nizar Hadi Abbas
International Journal of Electrical and Computer Engineering (IJECE) Vol 11, No 2: April 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v11i2.pp1143-1157

Abstract

Three-phase induction motor (TIM) is widely used in industrial application like paper mills, water treatment and sewage plants in the urban area. In these applications, the speed of TIM is very important that should be not varying with applied load torque. In this study, direct on line (DOL) motor starting without controller is modelled to evaluate the motor response when connected directly to main supply. Conventional PI controller for stator direct current and stator quadrature current of induction motor are designed as an inner loop controller as well as a second conventional PI controller is designed in the outer loop for controlling the TIM speed. Proposed combined PI-lead (CPIL) controllers for inner and outer loops are designed to improve the overall performance of the TIM as compared with the conventional controller. In this paper, dynamic adjustment grasshopper optimization algorithm (DAGOA) is proposed for tuning the proposed controller of the system. Numerical results based on well-selected test function demonstrate that DAGOA has a better performance in terms of speed of convergence, solution accuracy and reliability than SGOA. The study results revealed that the currents and speed of TIM system using CPIL-DAGOA are faster than system using conventional PI and CPIL controllers tuned by SGOA. Moreover, the speed controller of TIM system with CPIL controlling scheme based on DAGOA reached the steady state faster than others when applied load torque.
Tuning of different controlling techniques for magnetic suspending system using an improved bat algorithm Nizar Hadi Abbas
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 3: June 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1294.383 KB) | DOI: 10.11591/ijece.v10i3.pp2402-2415

Abstract

In this paper, design of proportional- derivative (PD) controller, pseudo-derivative-feedback (PDF) controller and PDF with feedforward (PDFF) controller for magnetic suspending system have been presented. Tuning of the above controllers is achieved based on Bat algorithm (BA). BA is a recent bio-inspired optimization method for solving global optimization problems, which mimic the behavior of micro-bats. The weak point of the standard BA is the exploration ability due to directional echolocation and the difficulty in escaping from local optimum. The new improved BA enhances the convergence rate while obtaining optimal solution by introducing three adaptations namely modified frequency factor, adding inertia weight and modified local search. The feasibility of the proposed algorithm is examined by applied to several benchmark problems that are adopted from literature. The results of IBA are compared with the results collected from standard BA and the well-known particle swarm optimization (PSO) algorithm. The simulation results show that the IBA has a higher accuracy and searching speed than the approaches considered. Finally, the tuning of the three controlling schemes using the proposed algorithm, standard BA and PSO algorithms reveals that IBA has a higher performance compared with the other optimization algorithms
Optimal integral sliding mode controller controller design for 2-RLFJ manipulator based on hybrid optimization algorithm Randa Jalaa Yahya; Nizar Hadi Abbas
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 1: February 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i1.pp293-302

Abstract

A newly hybrid nature-inspired algorithm called HSSGWOA is presented with the combination of the salp swarm algorithm (SSA) and grey wolf optimizer (GWO). The major idea is to combine the salp swarm algorithm's exploitation ability with the grey wolf optimizer's exploration ability to generate both variants' strength. The proposed algorithm uses to tune the parameters of the integral sliding mode controller (ISMC) that design to improve the dynamic performance of the two-link flexible joint manipulator. The efficiency and the capability of the proposed hybrid algorithm are evaluated based on the selected test functions. It is clear that when compared to other algorithms like SSA, GWO, differential evolution (DE), gravitational search algorithm (GSA), particles swarm optimization (PSO), and whale optimization algorithm (WOA). The ISMC parameters were tuned using the SSA, which was then compared to the HSSGWOA algorithm. The simulation results show the capabilities of the proposed algorithm, which gives an enhancement percentage of 57.46% compared to the standard algorithm for one of the links, and 55.86% for the other.
An improved swarm intelligence algorithms-based nonlinear fractional order-PID controller for a trajectory tracking of underwater vehicles Mustafa Wassef Hasan; Nizar Hadi Abbas
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 18, No 6: December 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v18i6.16282

Abstract

This paper presents a nonlinear fractional order proportional integral derivative (NL-FOPID) for autonomous underwater vehicle (AUV) to solve the path tracking problem under the unknown disturbances (model uncertainty or external disturbances). The considered controller schemes are tuned by two improved swarm intelligence optimization algorithms, the first on is the hybrid grey wolf optimization with simulated annealing (HGWO-SA) algorithm and an improved whale optimization algorithm (IWOA). The developed algorithms are assessed using a set of benchmark function (unimodal, multimodal, and fixed dimension multimodal functions) to guarantee the effectiveness of both proposed swarm algorithms. The HGWO-SA algorithm is used as a tuning method for the AUV system controlled by NL-FOPID scheme, and the IWOA is used as a tuning algorithm to obtain the PID controller’s parameters. The evaluation results show that the HGWO-SA algorithm improved the minimal point of the tested benchmark functions by 1-200 order, while the IWOA improved the minimum point by (1-50) order. Finally, the obtained simulation results from the system operated with NL-FOPID shows the competence in terms of the path tracking by 1-15% as compared to the PID method.
Controller design for gantry crane system using modified sine cosine optimization algorithm Nizar Hadi Abbas; Ahmed Abduljabbar Mahmood
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 19, No 1: February 2021
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v19i1.17279

Abstract

The objective of this research paper is to design a control system to optimize the operating works of the gantry crane system. The dynamic model of the gantry crane system is derived in terms of trolley position and payload oscillation, which is highly nonlinear. The crane system should have the capability to transfer the material to destination end with desired speed along with reducing the load oscillation, obtain expected trolley position and preserving the safety. Proposed controlling method is based on the proportional-integral-derivative (PID) controller with a series differential compensator to control the swinging of the payload and the system trolley movement in order to perform the optimum utilization of the gantry crane.  Standard sine cosine optimization algorithm is one of the most-recent optimization techniques based on a stochastic algorithm was presented to tune the PID controller with a series differential compensator. Furthermore, the considered optimization algorithm is modified in order to overcome the inherent drawbacks and solve complex benchmark test functions and to find the optimal design's parameters of the proposed controller. The simulation results show that the modified sine cosine optimization algorithm has better global search performance and exhibits good computational robustness based on test functions. Moreover, the results of testing the gantry crane model reveal that the proposed controller with standard and modified algorithms is effective, feasible and robust in achieving the desired requirements.
Controller design for underwater robotic vehicle based on improved whale optimization algorithm Mustafa Wassef Hasan; Nizar Hadi Abbas
Bulletin of Electrical Engineering and Informatics Vol 10, No 2: April 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v10i2.2288

Abstract

This paper presents the impact of introducing a two-controller on the linearized autonomous underwater vehicle (AUV) for vertical motion control. These controllers are presented to overcome the sensor noise of the AUV control model that effect on the tolerance and stability of the depth motion control. Linear quadratic Gaussian (LQG) controller is cascaded with AUV model to adapt the tolerance and the stability of the system and compared with FOPID established by the improved whale optimization algorithm (IWOA) to identify which controlling method can make the system more harmonize and tolerable. The developed algorithm is based on improving the original WOA by reshaping a specific detail on WOA to earn a warranty that the new IWOA will have values for the update position lower than the identified lower-bound (LB), and upper-bound (UB). Furthermore, the algorithm is examined by a set of test functions that include (unimodal, multimodal and fixed dimension multimodal functions). The privileges of applying IWOA are reducing the executing time and obtaining the semi-optimal objective function as compared with the original WOA algorithm and other popular swarm-intelligence optimization algorithms.