Nizar Hadi Abbas
University of Baghdad

Published : 6 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : International Journal of Electrical and Computer Engineering

Speed controller design for three-phase induction motor based on dynamic adjustment grasshopper optimization algorithm Ammar Falah Algamluoli; Nizar Hadi Abbas
International Journal of Electrical and Computer Engineering (IJECE) Vol 11, No 2: April 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v11i2.pp1143-1157

Abstract

Three-phase induction motor (TIM) is widely used in industrial application like paper mills, water treatment and sewage plants in the urban area. In these applications, the speed of TIM is very important that should be not varying with applied load torque. In this study, direct on line (DOL) motor starting without controller is modelled to evaluate the motor response when connected directly to main supply. Conventional PI controller for stator direct current and stator quadrature current of induction motor are designed as an inner loop controller as well as a second conventional PI controller is designed in the outer loop for controlling the TIM speed. Proposed combined PI-lead (CPIL) controllers for inner and outer loops are designed to improve the overall performance of the TIM as compared with the conventional controller. In this paper, dynamic adjustment grasshopper optimization algorithm (DAGOA) is proposed for tuning the proposed controller of the system. Numerical results based on well-selected test function demonstrate that DAGOA has a better performance in terms of speed of convergence, solution accuracy and reliability than SGOA. The study results revealed that the currents and speed of TIM system using CPIL-DAGOA are faster than system using conventional PI and CPIL controllers tuned by SGOA. Moreover, the speed controller of TIM system with CPIL controlling scheme based on DAGOA reached the steady state faster than others when applied load torque.
Tuning of different controlling techniques for magnetic suspending system using an improved bat algorithm Nizar Hadi Abbas
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 3: June 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1294.383 KB) | DOI: 10.11591/ijece.v10i3.pp2402-2415

Abstract

In this paper, design of proportional- derivative (PD) controller, pseudo-derivative-feedback (PDF) controller and PDF with feedforward (PDFF) controller for magnetic suspending system have been presented. Tuning of the above controllers is achieved based on Bat algorithm (BA). BA is a recent bio-inspired optimization method for solving global optimization problems, which mimic the behavior of micro-bats. The weak point of the standard BA is the exploration ability due to directional echolocation and the difficulty in escaping from local optimum. The new improved BA enhances the convergence rate while obtaining optimal solution by introducing three adaptations namely modified frequency factor, adding inertia weight and modified local search. The feasibility of the proposed algorithm is examined by applied to several benchmark problems that are adopted from literature. The results of IBA are compared with the results collected from standard BA and the well-known particle swarm optimization (PSO) algorithm. The simulation results show that the IBA has a higher accuracy and searching speed than the approaches considered. Finally, the tuning of the three controlling schemes using the proposed algorithm, standard BA and PSO algorithms reveals that IBA has a higher performance compared with the other optimization algorithms
Optimal integral sliding mode controller controller design for 2-RLFJ manipulator based on hybrid optimization algorithm Randa Jalaa Yahya; Nizar Hadi Abbas
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 1: February 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i1.pp293-302

Abstract

A newly hybrid nature-inspired algorithm called HSSGWOA is presented with the combination of the salp swarm algorithm (SSA) and grey wolf optimizer (GWO). The major idea is to combine the salp swarm algorithm's exploitation ability with the grey wolf optimizer's exploration ability to generate both variants' strength. The proposed algorithm uses to tune the parameters of the integral sliding mode controller (ISMC) that design to improve the dynamic performance of the two-link flexible joint manipulator. The efficiency and the capability of the proposed hybrid algorithm are evaluated based on the selected test functions. It is clear that when compared to other algorithms like SSA, GWO, differential evolution (DE), gravitational search algorithm (GSA), particles swarm optimization (PSO), and whale optimization algorithm (WOA). The ISMC parameters were tuned using the SSA, which was then compared to the HSSGWOA algorithm. The simulation results show the capabilities of the proposed algorithm, which gives an enhancement percentage of 57.46% compared to the standard algorithm for one of the links, and 55.86% for the other.