Nizar Hadi Abbas
University of Baghdad

Published : 6 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : TELKOMNIKA (Telecommunication Computing Electronics and Control)

An improved swarm intelligence algorithms-based nonlinear fractional order-PID controller for a trajectory tracking of underwater vehicles Mustafa Wassef Hasan; Nizar Hadi Abbas
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 18, No 6: December 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v18i6.16282

Abstract

This paper presents a nonlinear fractional order proportional integral derivative (NL-FOPID) for autonomous underwater vehicle (AUV) to solve the path tracking problem under the unknown disturbances (model uncertainty or external disturbances). The considered controller schemes are tuned by two improved swarm intelligence optimization algorithms, the first on is the hybrid grey wolf optimization with simulated annealing (HGWO-SA) algorithm and an improved whale optimization algorithm (IWOA). The developed algorithms are assessed using a set of benchmark function (unimodal, multimodal, and fixed dimension multimodal functions) to guarantee the effectiveness of both proposed swarm algorithms. The HGWO-SA algorithm is used as a tuning method for the AUV system controlled by NL-FOPID scheme, and the IWOA is used as a tuning algorithm to obtain the PID controller’s parameters. The evaluation results show that the HGWO-SA algorithm improved the minimal point of the tested benchmark functions by 1-200 order, while the IWOA improved the minimum point by (1-50) order. Finally, the obtained simulation results from the system operated with NL-FOPID shows the competence in terms of the path tracking by 1-15% as compared to the PID method.
Controller design for gantry crane system using modified sine cosine optimization algorithm Nizar Hadi Abbas; Ahmed Abduljabbar Mahmood
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 19, No 1: February 2021
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v19i1.17279

Abstract

The objective of this research paper is to design a control system to optimize the operating works of the gantry crane system. The dynamic model of the gantry crane system is derived in terms of trolley position and payload oscillation, which is highly nonlinear. The crane system should have the capability to transfer the material to destination end with desired speed along with reducing the load oscillation, obtain expected trolley position and preserving the safety. Proposed controlling method is based on the proportional-integral-derivative (PID) controller with a series differential compensator to control the swinging of the payload and the system trolley movement in order to perform the optimum utilization of the gantry crane.  Standard sine cosine optimization algorithm is one of the most-recent optimization techniques based on a stochastic algorithm was presented to tune the PID controller with a series differential compensator. Furthermore, the considered optimization algorithm is modified in order to overcome the inherent drawbacks and solve complex benchmark test functions and to find the optimal design's parameters of the proposed controller. The simulation results show that the modified sine cosine optimization algorithm has better global search performance and exhibits good computational robustness based on test functions. Moreover, the results of testing the gantry crane model reveal that the proposed controller with standard and modified algorithms is effective, feasible and robust in achieving the desired requirements.