Sana Jawarneh
Imam Abdulrahman Bin Faisal University

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

Hybrid feature selection method based on particle swarm optimization and adaptive local search method Malek Alzaqebah; Sana Jawarneh; Rami Mustafa A. Mohammad; Mutasem K. Alsmadi; Ibrahim Al-marashdeh; Eman A. E. Ahmed; Nashat Alrefai; Fahad A. Alghamdi
International Journal of Electrical and Computer Engineering (IJECE) Vol 11, No 3: June 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v11i3.pp2414-2422

Abstract

Machine learning has been expansively examined with data classification as the most popularly researched subject. The accurateness of prediction is impacted by the data provided to the classification algorithm. Meanwhile, utilizing a large amount of data may incur costs especially in data collection and preprocessing. Studies on feature selection were mainly to establish techniques that can decrease the number of utilized features (attributes) in classification, also using data that generate accurate prediction is important. Hence, a particle swarm optimization (PSO) algorithm is suggested in the current article for selecting the ideal set of features. PSO algorithm showed to be superior in different domains in exploring the search space and local search algorithms are good in exploiting the search regions. Thus, we propose the hybridized PSO algorithm with an adaptive local search technique which works based on the current PSO search state and used for accepting the candidate solution. Having this combination balances the local intensification as well as the global diversification of the searching process. Hence, the suggested algorithm surpasses the original PSO algorithm and other comparable approaches, in terms of performance.
Neighborhood search methods with Moth Optimization algorithm as a wrapper method for feature selection problems Malek Alzaqebah; Nashat Alrefai; Eman A. E. Ahmed; Sana Jawarneh; Mutasem K. Alsmadi
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 4: August 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1153.105 KB) | DOI: 10.11591/ijece.v10i4.pp3672-3684

Abstract

Feature selection methods are used to select a subset of features from data, therefore only the useful information can be mined from the samples to get better accuracy and improves the computational efficiency of the learning model. Moth-flam Optimization (MFO) algorithm is a population-based approach, that simulates the behavior of real moth in nature, one drawback of the MFO algorithm is that the solutions move toward the best solution, and it easily can be stuck in local optima as we investigated in this paper, therefore, we proposed a MFO Algorithm combined with a neighborhood search method for feature selection problems, in order to avoid the MFO algorithm getting trapped in a local optima, and helps in avoiding the premature convergence, the neighborhood search method is applied after a predefined number of unimproved iterations (the number of tries fail to improve the current solution). As a result, the proposed algorithm shows good performance when compared with the original MFO algorithm and with state-of-the-art approaches.
Comparison of specific segmentation methods used for copy move detection Eman Abdulazeem Ahmed; Malek Alzaqebah; Sana Jawarneh; Jehad Saad Alqurni; Fahad A. Alghamdi; Hayat Alfagham; Lubna Mahmoud Abdel Jawad; Usama A. Badawi; Mutasem K. Alsmadi; Ibrahim Almarashdeh
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 2: April 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v13i2.pp2363-2374

Abstract

In this digital age, the widespread use of digital images and the availability of image editors have made the credibility of images controversial. To confirm the credibility of digital images many image forgery detection types are arises, copy-move forgery is consisting of transforming any image by duplicating a part of the image, to add or hide existing objects. Several methods have been proposed in the literature to detect copy-move forgery, these methods use the key point-based and block-based to find the duplicated areas. However, the key point-based and block-based have a drawback of the ability to handle the smooth region. In addition, image segmentation plays a vital role in changing the representation of the image in a meaningful form for analysis. Hence, we execute a comparison study for segmentation based on two clustering algorithms (i.e., k-means and super pixel segmentation with density-based spatial clustering of applications with noise (DBSCAN)), the paper compares methods in term of the accuracy of detecting the forgery regions of digital images. K-means shows better performance compared with DBSCAN and with other techniques in the literature.