Mohamad Yusoff Alias
Multimedia University

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

An intelligent spectrum handoff scheme based on multiple attribute decision making for LTE-A network Abdulraqeb Alhammadi; Mardeni Roslee; Mohamad Yusoff Alias; Khalid Sheikhidris; Yong Jun Jack; Anas Bin Abas; Kesh. S. Randhava
International Journal of Electrical and Computer Engineering (IJECE) Vol 9, No 6: December 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (918.92 KB) | DOI: 10.11591/ijece.v9i6.pp5330-5339

Abstract

Cognitive radio networks (CRNs) play an important role in wireless communications which have the ability to significantly utilize the spectrum that not in used and reduce the current spectrum scarcity. CR allows unlicensed users (secondary users) to occupy the licensed spectrums without causing interference with licensed users (primary users). This can be achieved smoothly through four main CR procedures: spectrum sensing, spectrum decision, spectrum sharing, and spectrum  mobility. In this paper, we propose an intelligent spectrum handoff (SH) scheme based on multiple attributes decision making. The handoff decision depends on three considered parameters: received power, traffic load and arrival rate of the primary users. The simulation results show the proposed scheme outperformed the conventional scheme by reducing the probability of SH which leads to improve system performance.
QoS controlled capacity offload optimization in heterogeneous networks Siva Priya Thiagarajah; Mohamad Yusoff Alias; Wooi-Nee Tan
Bulletin of Electrical Engineering and Informatics Vol 9, No 6: December 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v9i6.2706

Abstract

An efficient resource allocation mechanism in the physical layer of wireless networks ensures that resources such as bandwidth and power are used with high efficiency in spite of low delay and high edge user data rate. Microcells in the network are typically set with bias settings to artificially increase the Signal-to-Interference-Plus-Noise Ratio, thus encouraging users to offload to the microcell. However, the artificial bias settings are tedious and often suboptimal. This work presents a low complexity algorithm for maximization of network capacity with load balancing in a heterogeneous network without the need for bias setting. The small cells were deployed in a grid topology at a selected distance from macrocell to enhance network capacity through coverage overlap.  User association and minimum user throughput were incorporated as constraints to enable closer simulation to real word Quality of Service requirements. The results showed that the proposed algorithm was able to maintain less than 10% user drop rate. The proposed algorithm can increase user confidence as well as maintain load balancing, maintain the scalability, and reduce power consumption of the wireless network.