Claim Missing Document
Check
Articles

Found 4 Documents
Search

Nonlinear control of WECS based on PMSG for optimal power extraction Mohamed Makhad; Malika Zazi; Azeddine Loulijat
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 3: June 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1751.135 KB) | DOI: 10.11591/ijece.v10i3.pp2815-2823

Abstract

This paper proposes a robust control strategy for optimizing the maximum power captured in Wind Energy Conversion Systems (WECS) based on permanent magnet synchronous generators (PMSG), which is integrated into the grid. In order to achieve the maximum power point (MPPT) the machine side converter regulates the rotational speed of the PMSG to track the optimal speed. To evaluate the performance and effectiveness of the proposed controller, a comparative study between the IBC control and the vector control based on PI controller was carried out through computer simulation. This analysis consists of two case studies including stochastic variation in wind speed and step change in wind speed.
A Nonlinear TSNN Based Model of a Lead Acid Battery El Mehdi Laadissi; Anas El Filali; Malika Zazi
Bulletin of Electrical Engineering and Informatics Vol 7, No 2: June 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (527.452 KB) | DOI: 10.11591/eei.v7i2.675

Abstract

The paper studies a nonlinear model based on time series neural network system (TSNN) to improve the highly nonlinear dynamic model of an automotive lead acid cell battery. Artificial neural network (ANN) take into consideration the dynamic behavior of both input-output variables of the battery charge-discharge processes. The ANN works as a benchmark, its inputs include delays and charging/discharging current values. To train our neural network, we performed a pulse discharge on a lead acid battery to collect experimental data. Results are presented and compared with a nonlinear Hammerstein-Wiener model. The ANN and nonlinear autoregressive exogenous model (NARX) models achieved satisfying results.
A Nonlinear TSNN Based Model of a Lead Acid Battery El Mehdi Laadissi; Anas El Filali; Malika Zazi
Bulletin of Electrical Engineering and Informatics Vol 7, No 2: June 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (527.452 KB) | DOI: 10.11591/eei.v7i2.675

Abstract

The paper studies a nonlinear model based on time series neural network system (TSNN) to improve the highly nonlinear dynamic model of an automotive lead acid cell battery. Artificial neural network (ANN) take into consideration the dynamic behavior of both input-output variables of the battery charge-discharge processes. The ANN works as a benchmark, its inputs include delays and charging/discharging current values. To train our neural network, we performed a pulse discharge on a lead acid battery to collect experimental data. Results are presented and compared with a nonlinear Hammerstein-Wiener model. The ANN and nonlinear autoregressive exogenous model (NARX) models achieved satisfying results.
A Nonlinear TSNN Based Model of a Lead Acid Battery El Mehdi Laadissi; Anas El Filali; Malika Zazi
Bulletin of Electrical Engineering and Informatics Vol 7, No 2: June 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (527.452 KB) | DOI: 10.11591/eei.v7i2.675

Abstract

The paper studies a nonlinear model based on time series neural network system (TSNN) to improve the highly nonlinear dynamic model of an automotive lead acid cell battery. Artificial neural network (ANN) take into consideration the dynamic behavior of both input-output variables of the battery charge-discharge processes. The ANN works as a benchmark, its inputs include delays and charging/discharging current values. To train our neural network, we performed a pulse discharge on a lead acid battery to collect experimental data. Results are presented and compared with a nonlinear Hammerstein-Wiener model. The ANN and nonlinear autoregressive exogenous model (NARX) models achieved satisfying results.