Jamal Al-Nabulsi
Al-Ahliyya Amman University

Published : 6 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : Bulletin of Electrical Engineering and Informatics

Non-invasive sensing techniques for glucose detection: a review Jamal Al-Nabulsi; Hamza Abu Owida; Jumana Ma’touq; Sabrina Matar; Esraa Al-Aazeh; Abdelqader Al-Maaiouf; Abdullah Bleibel
Bulletin of Electrical Engineering and Informatics Vol 11, No 4: August 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v11i4.3584

Abstract

Diabetes is becoming more prevalent over the world, with approximately 7.8 million new cases diagnosed each year. The most crucial aspect of diabetes therapy is frequent glucose monitoring; the one and only way diabetics can maintain healthy blood sugar standard is through diet and exercise. Blood glucose monitoring techniques have gone through massive transformations over the past few years. Non-invasive procedures outperform invasive and minimally invasive ones in terms of inconvenience, pain, and recovery time. Thus, this review aims to explore the latest tools for non-invasive glucose monitoring sensors and techniques. The study showed that non-invasive techniques such as optical and non-optical techniques are better than invasive techniques in terms of accuracy, reliability, repeatability, and ease of use. The study also uncovered that the photoacoustic spectroscopy and ultrasonic techniques have room for further development and advancement considering their flexible nature. The work also proved that the ultrasonic technique is the most promising approach, in conclusion.
Carbon nanomaterials advancements for biomedical applications Hamza Abu Owida; Nidal M. Turab; Jamal Al-Nabulsi
Bulletin of Electrical Engineering and Informatics Vol 12, No 2: April 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v12i2.4310

Abstract

The development of new technologies has helped tremendously in delivering timely, appropriate, acceptable, and reasonably priced medical treatment. Because of developments in nanoscience, a new class of nanostructures has emerged. Nanomaterials, because of their small size, display exceptional physio-chemical capabilities such as enhanced absorption and reactivity, increased surface area, molar extinction coefficients, tunable characteristics, quantum effects, and magnetic and optical properties. Researchers are interested in carbon-based nanomaterials due to their unique chemical and physical properties, which vary in thermodynamic, biomechanical, electrical, optical, and structural aspects. Due to their inherent properties, carbon nanomaterials, including fullerenes, graphene, carbon nanotubes (CNTs), and carbon nanofibers (CNFs), have been intensively studied for biomedical applications. This article is a review of the most recent findings about the development of carbon-based nanomaterials for use in biosensing, drug delivery, and cancer therapy, among other things.
Emerging development in polymeric electrospun nanoscale mats for tissue regeneration: narrative review of the literature Hamza Abu Owida; Muhammad Al-Ayyad; Jamal Al-Nabulsi; Nidal Turab; Mustafa Abdullah
Bulletin of Electrical Engineering and Informatics Vol 12, No 5: October 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v12i5.4837

Abstract

Tissue engineering is a cutting-edge discipline that brings together scientific and health-related, biological, and engineering principles in order to build tissue-engineered constructions able to restore or sustain the physiological properties of native tissue, or to marginally enhance those properties. This field is called "regenerative medicine". By constructing structures that are analogous to the extracellular matrix, it will be possible to improve the transmission of oxygen and nutrients, as well as the release of toxins during the process of tissue healing, all while simultaneously maturing tissues. Over the past few years, various studies have concentrated on looking at nanostructures in three dimensions with the goal of using them in tissue engineering. In this group of methods, electrospinning stands out as one of the most successful options. Over the course of the past few decades, a great number of nanofibrous scaffolds have been produced for the purpose of restoring and repairing damaged tissue. In this article, the engineering of new tissues using nanofibrous textures as scaffolds are reviewed. In addition, recent developments in tissue regeneration and the difficulties related to electrospinning are discussed in this article, along with their respective solutions.