Nidal M. Turab
Al-Ahliyya Amman University

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Carbon nanomaterials advancements for biomedical applications Hamza Abu Owida; Nidal M. Turab; Jamal Al-Nabulsi
Bulletin of Electrical Engineering and Informatics Vol 12, No 2: April 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v12i2.4310

Abstract

The development of new technologies has helped tremendously in delivering timely, appropriate, acceptable, and reasonably priced medical treatment. Because of developments in nanoscience, a new class of nanostructures has emerged. Nanomaterials, because of their small size, display exceptional physio-chemical capabilities such as enhanced absorption and reactivity, increased surface area, molar extinction coefficients, tunable characteristics, quantum effects, and magnetic and optical properties. Researchers are interested in carbon-based nanomaterials due to their unique chemical and physical properties, which vary in thermodynamic, biomechanical, electrical, optical, and structural aspects. Due to their inherent properties, carbon nanomaterials, including fullerenes, graphene, carbon nanotubes (CNTs), and carbon nanofibers (CNFs), have been intensively studied for biomedical applications. This article is a review of the most recent findings about the development of carbon-based nanomaterials for use in biosensing, drug delivery, and cancer therapy, among other things.