Manoj Kumar
National Institute of Technology Manipur

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Design and implementation of two-dimensional digital finite impulse response filter using very high speed integrated circuit hardware description language Thingujam Churchil Singh; Manoj Kumar
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 4: August 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i4.pp3684-3691

Abstract

The main purpose of this paper is to design a two-dimensional digital finite impulse response (FIR) filter using data broadcast and non-broadcast structure. The implementation of two-dimensional digital FIR filter is done using very high speed integrated circuit hardware description language (VHDL). Rectangular window method is used for calculating 2D digital FIR filter coefficients for data broadcast and non-broadcast structure. The coefficients of the one-dimensional digital FIR filter are obtained using the MATLAB filter design and analysis (FDA) tool for two different cut-off frequencies and are multiplied to get the necessary coefficient for the two-dimensional FIR filter to be designed; the simulation is done on Artix-7 series field programmable gate array (FPGA), target device (xc7a35t-cpg236) using Vivadov.2015.2. The proposed design reduces the area utilization and the power consumption when compared with the existing literature. The experimental result shows that the power consumption is improved by 97% and there is an improvement of 24% in area utilization for the two-dimensional with and without data broadcast one dimensional FIR filter structures.
Implementation of a secure wireless communication system using true random number generator for internet of things Huirem Bharat Meitei; Manoj Kumar
Indonesian Journal of Electrical Engineering and Computer Science Vol 30, No 2: May 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v30.i2.pp982-992

Abstract

This paper describes the design and implementation of an internet of thing (IoT)-based application that uses a true random number generator (TRNG) with an all digital phase locked loop (ADPLL) for secure wireless communication. Field programmable gate array (FPGA) boards were used on the transmitter and receiver sides and were interfaced with Esp8266 chips to wirelessly send and receive encrypted sensor data. The MQ-2 gas sensor and tracking sensor were connected to the FPGA board on the transmitter side, where data from the sensors was encrypted using the exclusive-OR (XOR) function and the TRNG architecture. The system can be controlled by users through a web browser served by the ThingSpeak cloud. The Artix-7 FPGA device is used to implement the proposed wireless communication system, for which design and synthesis were done using the Xilinx Vivado 2015.2 tool. The proposed system uses a low amount of power and is suitable for a standalone, highly secure TRNG-based IoT application. The National Institute of Standard and Testing (NIST SP 800-22) test showed that ADPLL with finite impulse response (FIR) filter-based TRNGs are better for encrypting IoT devices for secure wireless communication.