Nor Aizam Adnan
Universiti Teknologi MARA

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Estimation of TRMM rainfall for landslide occurrences based on rainfall threshold analysis Noraisyah Tajudin; Norsuzila Ya’acob; Darmawaty Mohd Ali; Nor Aizam Adnan
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 3: June 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (731.597 KB) | DOI: 10.11591/ijece.v10i3.pp3208-3215

Abstract

Landslide can be triggered by intense or prolonged rainfall. Precipitation data obtained from ground-based observation is very accurate and commonly used to do analysis and landslide prediction. However, this approach is costly with its own limitation due to lack of density of ground station, especially in mountain area. As an alternative, satellite derived rainfall techniques have become more favorable to overcome these limitations. Moreover, the satellite derived rainfall estimation needs to be validated on its accuracy and its capability to predict landslide which presumably triggered by rainfall. This paper presents the investigation of using the TRMM-3B42V7 data in comparison to the available rain-gauge data in Ulu Kelang, Selangor. The monthly average rainfall, cumulative rainfall and rainfall threshold analysis from 1998 to 2011 is compared using quantitative statistical criteria (Pearson correlation, bias, root mean square error, mean different and mean). The results from analysis showed that there is a significant and strong positive correlation between the TRMM 3B42V7 and rain gauge data. The threshold derivative from the satellite products is lower than the rain gauge measurement. The findings indicated that the proposed method can be applied using TRMM satellite estimates products to derive rainfall threshold for the possible landslide occurrence.
Soil moisture index estimation from landsat 8 images for prediction and monitoring landslide occurrences in Ulu Kelang, Selangor, Malaysia Noraisyah Tajudin; Norsuzila Ya'acob; Darmawaty Mohd Ali; Nor Aizam Adnan
International Journal of Electrical and Computer Engineering (IJECE) Vol 11, No 3: June 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v11i3.pp2101-2108

Abstract

Soil moisture is one of the contributing factors that accelerates soil erosion and landslide events due to the increase in pore pressure which eventually reduces the soil strength. For landslide prediction and monitoring purposes, large-scale measurement involves estimating the soil moisture. However, estimation of soil moisture usually involves point-based measurements at a particular site and time, which is difficult to capture the spatial and temporal soil moisture dynamics. This paper presents the estimation of the SMI using Landsat 8 images for prediction and monitoring of landslide events in Ulu Kelang, Selangor. The selected SMI map for dry, moist, and wet seasons are obtained from climatology rainfall analysis over 20-year periods (1998-2017). SMI is assessed based on remote sensing data which are land surface temperature (LST) and normalized difference vegetation index (NDVI) using GIS software. Overall results indicated that rainfall distribution is high during inter-monsoon (IM), followed by northeast monsoon (NEM) and southwest monsoon (SWM) season. High rainfall distribution is a direct contributor towards SMI condition. Results from simulation show that April 2017 is known to have the highest SMI estimation season and selected to be the best SMI mapping parameter to be applied for prediction and monitoring of landslide events.