Usama A. Badawi
University of Dammam

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Fish classification using extraction of appropriate feature set Usama A. Badawi
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 3: June 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i3.pp2488-2500

Abstract

The field of wild fish classification faces many challenges such as the amount of training data, pose variation and uncontrolled environmental settings. This research work introduces a hybrid genetic algorithm (GA) that integrates the simulated annealing (SA) algorithm with a back-propagation algorithm (GSB classifier) to make the classification process. The algorithm is based on determining the suitable set of extracted features using color signature and color texture features as well as shape features. Four main classes of fish images have been classified, namely, food, garden, poison, and predatory. The proposed GSB classifier has been tested using 24 fish families with different species in each. Compared to the back-propagation (BP) algorithm, the proposed classifier has achieved a rate of 87.7% while the elder rate is 82.9%.