Nga Thi-Thuy Vu
Hanoi University of Science and Technology

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

LMI based antiswing adaptive controller for uncertain overhead cranes Nga Thi-Thuy Vu
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 6: December 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (561.532 KB) | DOI: 10.11591/ijece.v10i6.pp5793-5801

Abstract

This paper proposes an adaptive anti-sway controller for uncertain overhead cranes. The state-space model of the 2D overhead crane with the system parameter uncertainties is shown firstly. Next, the adaptive controller which can adapt with the system uncertainties and input disturbances is established. The proposed controller has ability to move the trolley to the destination in short time and with small oscillation of the load despite the effect of the uncertainties and disturbances. Moreover, the controller has simple structure so it is easy to execute. Also, the stability of the closed-loop system is analytically proven. The proposed algorithm is verified by using Matlab/Simulink simulation tool. The simulation results show that the presented controller gives better performances (i.e., fast transient response, position tracking, and low swing angle) than the state feedback controller when there exist system parameter variations as well as input disturbances.
Robust adaptive controller design for excavator arm Nga Thi-Thuy Vu
IAES International Journal of Robotics and Automation (IJRA) Vol 8, No 4: December 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (452.332 KB) | DOI: 10.11591/ijra.v8i4.pp293-300

Abstract

This paper presents a robust adaptive controller that does not depend on the system parameters for an excavator arm. Firstly, the model of the excavator arm is demonstrated in the Euler-Lagrange form considering with overall excavator system. Next, a robust adaptive controller has been constructed from information of state error. In this paper, the stability of overall system is mathematically proven by using Lyapunov stability theory. Also, the proposed controller is model free then the closed loop system is not affected by disturbances and uncertainties. Finally, the simulation is executed in Matlab/Simulink for both presented scheme and the PD controller under some conditions to ensure that the proposed algorithm given the good performances for all cases.
Adaptive sliding mode control for uncertain wheel mobile robot Hoa Van Doan; Nga Thi-Thuy Vu
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 4: August 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v13i4.pp3939-3947

Abstract

In this paper a simple adaptive sliding mode controller is proposed for tracking control of the wheel mobile robot (WMR) systems. The WMR are complicated systems with kinematic and dynamic model so the error dynamic model is built to simplify the mathematical model. The sliding mode control then is designed for this error model with the adaptive law to compensate for the mismatched. The proposed control scheme in this work contains only one control loop so it is simple in both implementation and mathematical calculation. Moreover, the requirement of upper bounds of disturbance that is popular in the sliding mode control is cancelled, so it is convenient for real world applications. Finally, the effectiveness of the presented algorithm is verified through mathematical proof and simulations. The comparison with the existing work is also executed to evaluate the correction of the introduced adaptive sliding mode controller. Thoroughly, the settling time, the peak value, the integral square error of the proposed control scheme reduced about 50% in comparison with the compared disturbance observer based sliding mode control.