Claim Missing Document
Check
Articles

Found 3 Documents
Search

State feedback control for human inspiratory system Lafta Esmaeel Jumaa Alkurawy; Khalid Gadban Mohammed; Ammar Issa Ismael
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 3: June 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i3.pp2405-2413

Abstract

The mathematical modeling of human respiratory system is an essentially part in saving precision information of diagnostic about the disease of cardiovascular respiratory system. The physics of respiratory system and cardiovascular are completely interconnected with each other. In this paper, we will study the state feedback control for the inspiratory system during study the characteristics of the response output with the stability. The model of system is nonlinear and linearized it by Tayler method to be simple to matching with the control theory. We convert the system from differential equation to state equation to find the optimal control that helps to drive the respiratory system. Simulations are managed to indicate the proposed method effectiveness. The results of simulations are validated by using a real information form the health center.
Application of artificial intelligence techniques for LFC and AVR systems using PID controller Ghassan Abdullah Salman; Assama Sahib Jafar; Ammar Issa Ismael
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 10, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (632.611 KB) | DOI: 10.11591/ijpeds.v10.i3.pp1694-1704

Abstract

Development of electrical power systems led to search for  a new mathematical methods to find the values of PID (Proportional-Integral-Derivative) controller. The goal of the paper is to improve the performance of the overall system, through improved the frequency deviation and the voltage deviation characteristics using PID controller, so in this paper are proposed three methods of artificial intelligence techniques for designing the optimal values of PID controller of Load-Frequency-Control (LFC) and Automatic-Voltage-Regulator (AVR), the first is the Firefly Algorithm (FA), the second is the Genetic Algorithm (GA) and the third is the Particle Swarm Optimization (PSO), in addition to these three methods use the conventional (Ziegler–Nichols, Z-N). The FA, GA and PSO are used to obtain the optimal parameters of PID controller based on minimized different various indices as a fitness function, these fitness functions namely Integral-Time-Absolute-Error (ITAE) and Integral-Time-Square-Error (ITSE). Comparison between the results obtained show that FA has better performance to control of frequency deviation and terminal voltage than GA and PSO, so the results observed the FA is more effectual and reliable to determine the optimal values of PID controller.
Design of H_∞ for induction motor Ammar issa Ismael; Lafta E. Jumaa; Nisreen Khamas
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 11, No 1: March 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (437.577 KB) | DOI: 10.11591/ijpeds.v11.i1.pp24-33

Abstract

For Induction motor is a system that works at their speed, nevertheless there are applications at which the speed operations are needed. The control of range of speed of induction motor techniques is available. The robust control is used with induction motor and the performance of the system with the controller will be improved. The mathematical model to the controller, which were coded in MATLAB. The modeling and controller will be shown by the conditions of robustness of  be less than one.