Claim Missing Document
Check
Articles

Found 4 Documents
Search
Journal : International Journal of Electrical and Computer Engineering

Learning Style Classification via EEG Sub-band Spectral Centroid Frequency Features Megat Syahirul Amin Megat Ali; Aisyah Hartini Jahidin; Nooritawati Md Tahir; Mohd Nasir Taib
International Journal of Electrical and Computer Engineering (IJECE) Vol 4, No 6: December 2014
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (299.413 KB)

Abstract

Kolb’s Experiential Learning Theory postulates that in learning, knowledge is created by the learners’ ability to absorb and transform experience. Many studies have previously suggested that at rest, the brain emits signatures that can be associated with cognitive and behavioural patterns. Hence, the study attempts to characterise and classify learning styles from EEG using the spectral centroid frequency features. Initially, learning style of 68 university students has been assessed using Kolb’s Learning Style Inventory. Resting EEG is then recorded from the prefrontal cortex. Next, the EEG is pre-processed and filtered into alpha and theta sub-bands in which the spectral centroid frequencies are computed from the corresponding power spectral densities. The dataset is further enhanced to 160 samples via synthetic EEG. The obtained features are then used as input to the k-nearest neighbour classifier that is incorporated with k-fold cross-validation. Feature classification via k-nearest neighbour has attained five-fold mean training and testing accuracies of 100% and 97.5%, respectively. Hence, results show that the alpha and theta spectral centroid frequencies represent distinct and stable EEG signature to distinguish learning styles from the resting brain.DOI:http://dx.doi.org/10.11591/ijece.v4i6.6833
IQ Classification via Brainwave Features: Review on Artificial Intelligence Techniques Aisyah Hartini Jahidin; Mohd Nasir Taib; Nooritawati Md Tahir; Megat Syahirul Amin Megat Ali
International Journal of Electrical and Computer Engineering (IJECE) Vol 5, No 1: February 2015
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (162.714 KB) | DOI: 10.11591/ijece.v5i1.pp84-91

Abstract

Intelligence study is one of keystone to distinguish individual differences in cognitive psychology. Conventional psychometric tests are limited in terms of assessment time, and existence of biasness issues. Apart from that, there is still lack in knowledge to classify IQ based on EEG signals and intelligent signal processing (ISP) technique. ISP purpose is to extract as much information as possible from signal and noise data using learning and/or other smart techniques. Therefore, as a first attempt in classifying IQ feature via scientific approach, it is important to identify a relevant technique with prominent paradigm that is suitable for this area of application. Thus, this article reviews several ISP approaches to provide consolidated source of information. This in particular focuses on prominent paradigm that suitable for pattern classification in biomedical area. The review leads to selection of ANN since it has been widely implemented for pattern classification in biomedical engineering.
Modeling of agarwood oil compounds based on linear regression and ANN for oil quality classification Noratikah Zawani Mahabob; Zakiah Mohd Yusoff; Aqib Fawwaz Mohd Amidon; Nurlaila Ismail; Mohd Nasir Taib
International Journal of Electrical and Computer Engineering (IJECE) Vol 11, No 6: December 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v11i6.pp5505-5514

Abstract

Agarwood oil is in increasing demand in Malaysia throughout the world for use in incense, traditional medicine, and perfumes. However, there is still no standardized grading method for agarwood oil. It is vital to grade agarwood oil into high and low quality so that both qualities can be properly differentiated. In the present study, data were obtained from the Forest Research Institute Malaysia (FRIM), Selangor Malaysia and Bioaromatic Research Centre of Excellence (BARCE), Universiti Malaysia Pahang (UMP). The work involves the data from a previous researcher. As a part of on-going research, the stepwise linear regression and multilayer perceptron have been proposed for grading agarwood oil. The output features of the stepwise regression were the input features for modeling agarwood oil in a multilayer perceptron (MLP) network. A three layer MLP with 10 hidden neurons was used with three different training algorithms, namely resilient backpropagation (RBP), levenberg marquardt (LM) and scaled-conjugate gradient (SCG). All analytical work was performed using MATLAB software version R2017a. It was found that one hidden neuron in LM algorithm performed the most accurate result in the classification of agarwood oil with the lowest mean squared error (MSE) as compared to SCG and RBP algorithms. The findings in this research will be a benefit for future works of agarwood oil research areas, especially in terms of oil quality classification.
A novel application of artificial neural network for classifying agarwood essential oil quality Noratikah Zawani Mahabob; Zakiah Mohd Yusoff; Aqib Fawwaz Mohd Amidon; Nurlaila Ismail; Mohd Nasir Taib
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 6: December 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i6.pp6645-6652

Abstract

This work studies the agarwood oil classification into high and low quality by using two different techniques. Initially, the Forest Research Institute Malaysia (FRIM) and Universiti Malaysia Pahang (UMP) are where the sample preparation and compound extraction of agarwood oil is collected. The data collections were done from the previous researcher consists of 96 samples from seven significant agarwood oil compounds. The artificial neural network (ANN) and the proposed stepwise regression technique were used in this study. The stepwise regression was done the feature selection and successfully reduced agarwood oil compounds from seven to four. Then, the ANN technique was used to classify agarwood oil into high and low using input from seven and four compounds separately. The performance of ANN with different inputs is compared (ANN with seven inputs compared with ANN with four inputs). All the experimental work was performed using the MATLAB R2017b using the “patternet” implemented Levenberg Marquardt algorithm and ten hidden neurons. It was found that the ANN technique using seven compounds obtained the best performance according to high accuracy and lower mean square error (MSE) value. Finally, 1 hidden neuron in ANN with seven inputs selected as the best neuron for grading the agarwood oil compounds.