Megat Syahirul Amin Megat Ali
Universiti Teknologi MARA

Published : 9 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 9 Documents
Search

Learning Style Classification via EEG Sub-band Spectral Centroid Frequency Features Megat Syahirul Amin Megat Ali; Aisyah Hartini Jahidin; Nooritawati Md Tahir; Mohd Nasir Taib
International Journal of Electrical and Computer Engineering (IJECE) Vol 4, No 6: December 2014
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (299.413 KB)

Abstract

Kolb’s Experiential Learning Theory postulates that in learning, knowledge is created by the learners’ ability to absorb and transform experience. Many studies have previously suggested that at rest, the brain emits signatures that can be associated with cognitive and behavioural patterns. Hence, the study attempts to characterise and classify learning styles from EEG using the spectral centroid frequency features. Initially, learning style of 68 university students has been assessed using Kolb’s Learning Style Inventory. Resting EEG is then recorded from the prefrontal cortex. Next, the EEG is pre-processed and filtered into alpha and theta sub-bands in which the spectral centroid frequencies are computed from the corresponding power spectral densities. The dataset is further enhanced to 160 samples via synthetic EEG. The obtained features are then used as input to the k-nearest neighbour classifier that is incorporated with k-fold cross-validation. Feature classification via k-nearest neighbour has attained five-fold mean training and testing accuracies of 100% and 97.5%, respectively. Hence, results show that the alpha and theta spectral centroid frequencies represent distinct and stable EEG signature to distinguish learning styles from the resting brain.DOI:http://dx.doi.org/10.11591/ijece.v4i6.6833
IQ Classification via Brainwave Features: Review on Artificial Intelligence Techniques Aisyah Hartini Jahidin; Mohd Nasir Taib; Nooritawati Md Tahir; Megat Syahirul Amin Megat Ali
International Journal of Electrical and Computer Engineering (IJECE) Vol 5, No 1: February 2015
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (162.714 KB) | DOI: 10.11591/ijece.v5i1.pp84-91

Abstract

Intelligence study is one of keystone to distinguish individual differences in cognitive psychology. Conventional psychometric tests are limited in terms of assessment time, and existence of biasness issues. Apart from that, there is still lack in knowledge to classify IQ based on EEG signals and intelligent signal processing (ISP) technique. ISP purpose is to extract as much information as possible from signal and noise data using learning and/or other smart techniques. Therefore, as a first attempt in classifying IQ feature via scientific approach, it is important to identify a relevant technique with prominent paradigm that is suitable for this area of application. Thus, this article reviews several ISP approaches to provide consolidated source of information. This in particular focuses on prominent paradigm that suitable for pattern classification in biomedical area. The review leads to selection of ANN since it has been widely implemented for pattern classification in biomedical engineering.
IQ level prediction and cross-relational analysis with perceptual ability using EEG-based SVM classification model Noor Hidayah Ros Azamin; Mohd Nasir Taib; Aisyah Hartini Jahidin; Dyg Suzana Awang; Megat Syahirul Amin Megat Ali
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 8, No 4: December 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (518.92 KB) | DOI: 10.11591/ijai.v8.i4.pp436-442

Abstract

This paper presents IQ level prediction and cross-relational analysis with perceptual ability using EEG-based SVM classification model. The study hypothesized that measure of perceptual ability and intelligence is strongly connected through the brain’s attention regulatory mechanism. Therefore, an intelligent classification model should be able to predict and map IQ levels from a dataset associated with varying levels of perception. 115 samples of resting EEG is acquired from the left prefrontal cortex. Sixty-five is used for perceptual ability analysis via CTMT, while another fifty is used in the development of IQ level classification model using SVM. The mean pattern of theta, alpha and beta bands show positive correlation between perceptual ability and IQ level datasets. Meanwhile, the developed SVM model outperforms the previous ANN method; yielding 100% accuracy for training and testing. Subsequently, the classification model successfully predicts and mapped samples from the perceptual ability dataset to its corresponding IQ levels with 98.5% accuracy. Therefore, validity of the study is confirmed through positive correlation demonstrated by both traits of cognition using the pattern of mean power ratio features, and successful prediction of IQ level for perceptual ability dataset via SVM classification model.
Ananas comosus crown image thresholding and crop counting using a colour space transformation scheme Wan Nurazwin Syazwani Rahimi; Muhammad Asraf H.; Megat Syahirul Amin Megat Ali
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 18, No 5: October 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v18i5.13895

Abstract

The implementation of unmanned aerial vehicle (UAV) technology having image processing capabilities provides an alternative way to observe pineapple crowns captured from aerial images. In the majority of pineapple plantations, an agricultural officer will physically count the crop yield prior to harvesting the Ananas Comosus, also known as pineapple. This process is particularly evident in large plantation areas to accurately identify pineapple numbers. To alleviate this issue, given it is both time-consuming and arduous, automating the process using image processing is suggested. In this study, the possibilities and comparisons between two techniques associated with an image thresholding scheme known as HSV and L*A*B* colour space schemes were implemented. This was followed by determining the threshold by applying an automatic counting (AC) method to count the crop yield. The results of the study found that by applying colour thresholding for segmentation, it improved the low contrast image due to different heights and illumination levels on the acquired colour image. The images that were acquired using a UAV revealed that the best distance for capturing the images was at the height of three (3) metres above ground level. The results also confirm that the HSV colour space provides a more efficient approach with an average error increment of 47.6% when compared to the L*A*B*colour space.
Non-linear behavior of root and stem diameter changes in monopodial orchid Mohd Khairi Nordin; Mohammad Farid Saaid; Nooritawati Md Tahir; Ahmad Ihsan Mohd Yassin; Megat Syahirul Amin Megat Ali
Bulletin of Electrical Engineering and Informatics Vol 10, No 6: December 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v10i6.3191

Abstract

Precision agriculture aims to maximize yield with optimum resources. Vast majority of natural systems are acknowledged as complex and non-linear. However, prior to formulation of precise models, linearity tests are performed to validate plant behavior. This study has presented proof that the water uptake system in monopodial orchid is indeed non-linear. The change in physical growth of root and stem due to temperature and relative humidity factors are observed. The work focused on Ascocenda Fuchs Harvest Moon x (V. Chaophraya x Boots) orchid hybrid. Three complementary methods are presented: linearity tests through 1) regression fitting; 2) scatter plots; and 3) cross-correlation function tests. Root diameter, stem diameter, temperature, and relative humidity are logged at 15 minutes interval for a duration of 71 days. The polynomial equations derived for root diameter and stem diameter changes attained strong regression coefficients. The non-linear behavior is further confirmed by the scatter plots where no linear associations are present between the independent and dependent variables. Subsequently, the cross-correlation function tests conducted on temperature-root diameter, temperature-stem diameter, relative humidity-root diameter, and relative humidity-stem diameter combinations also revealed weak correlation. Despite using different techniques, the behavior of physical changes has been consistently proven to be non-linear.
Classification of nutrient deficiency in oil palms from leaf images using convolutional neural network Muhammad Ikmal Hafiz Razali; Muhammad Asraf Hairuddin; Aisyah Hartini Jahidin; Mohd Hanafi Mat Som; Megat Syahirul Amin Megat Ali
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 11, No 4: December 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v11.i4.pp%p

Abstract

Oil palm is a perennial plant that thrives well in tropical climate. Apart from humid environment, the plant also requires a wide variety of nutrients. Any deficiencies will directly affect its growth and palm oil production. These can often be detected from the change of leaf colour and texture. Deviations from the standard dark green colour indicates lack of certain nutrients. Therefore, this study proposes convolutional neural network (CNN) to classify nutrient deficiency in oil palms using leaf images. A total of 180 leaf images are acquired using standardized protocol. The samples are evenly distributed into healthy, nitrogen-deficient, and potassium-deficient groups. Residual network (ResNet)-50, visual geometry group-16 (VGG16), Densely connected network (DenseNet)-201, and AlexNet are trained and tested using the randomized samples. Each attained classification accuracies of 96.7%, 100%, 98.3%, and 100% respectively. Despite yielding similar performance, AlexNet is the more computational efficient architecture with less convolutional layers compared to VGG-16.
Classification of hand gestures from forearm electromyogram signatures from support vector machine Diaa Albitar; R. Jailani; Megat Syahirul Amin Megat Ali; Anwar P. P. Abdul Majeed
Indonesian Journal of Electrical Engineering and Computer Science Vol 24, No 1: October 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v24.i1.pp260-268

Abstract

Robotic prosthetics is increasingly adopted as an enabling technology for amputees. These are vital not only for activities of daily living but to display expression and affection. A vital element to this system is an intelligent model that can identify signatures from the remaining limb that can be mapped to specific effector movements. Therefore, the study proposes the use of forearm electromyogram to classify between different types of hand gestures; fingers spread, wave out, wave in, fist, double tap, and relaxed state. Data are acquired from 32 subjects using Myo armband. Initially, a total of 248 time-and frequency-domain features are extracted from the eightchannel device. Neighborhood component analysis has reduced them to a total of fourteen features. A hand gesture classification model based on electromyogram signal has been successfully developed using support vector machine with overall accuracy of 97.4% for training, and 88.0% for testing.
Electrocardiogram profiling of myocardial infarction history using MLP and HMLP networks Fatin Syahirah Ab Gani; Mohd Khairi Nordin; Ahmad Ihsan Mohd Yassin; Idnin Pasya Ibrahim; Megat Syahirul Amin Megat Ali
Indonesian Journal of Electrical Engineering and Computer Science Vol 17, No 1: January 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v17.i1.pp183-190

Abstract

Narrowing of coronary arteries caused by cholesterol deposits deprives heart tissues of oxygen. In prolonged conditions, these will result in myocardium infarction. The presence of damage tissues modifies the normal sinus rhythm and this can be detected using electrocardiogram (ECG). Hence, this paper characterized history of myocardial infarction from survivors using QRS power ratio features from the ECG. Subsequent profiling is performed using multilayered perceptron (MLP) and hybrid multilayered perceptron (HMLP) networks. ECG with history of anterior and inferior infarctions, along with healthy controls is obtained from PTB Diagnostic ECG Database. The signal is initially pre-processed and the power ratio features are extracted for low- and mid-frequency components. The features are then used as input vector to the MLP and HMLP networks. The optimized MLP has attained accuracies of 99.2% for training and 98.0% for testing. Meanwhile, the optimized HMLP managed to achieve accuracies of 99.4% for training and 97.8% for testing. Despite the similarities in network performance, MLP provides a better alternative due to the reduced computational requirements by as much as 30%.
NARX-based water quality index model of Air Busuk River using chemical parameter measurements Muhammad Ierfan Hasnan; Azhar Jaffar; Norashikin M. Thamrin; Mohamad Farid Misnan; Ahmad Ihsan Mohd Yassin; Megat Syahirul Amin Megat Ali
Indonesian Journal of Electrical Engineering and Computer Science Vol 23, No 3: September 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v23.i3.pp1663-1673

Abstract

Water quality plays a major role in issues related to public health and marine life. Hence, monitoring river for contaminations is vital for ensuring safe and sustainable water resources. Conventional method for assessing water quality index is costly as it requires considerable amount of time and laboratory resources. Therefore, this study proposes a water quality index model based on artificial neural network. A six-year data for Air Busuk River is obtained from the Department of Environment. Dissolved oxygen, biological oxygen demand, and ammoniacal nitrogen has shown high correlation with water quality index. The water quality index model is then developed based on these parameters, employing the non-linear autoregressive with exogeneous input structure. Generally, the model which is based on three chemical parameters has shown satisfactory performance with overall regression of 0.8767 and passed the correlation function tests. The model offers a potentially efficient method for assessing water quality with cost-saving benefits for government agencies and monitoring authorities.