Sarmad Nozad Mahmood
Al-Kitab University

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

The effects of material’s features and feeding mechanism on high-gain antenna construction Hamed A. Al-Falahi; Drai Ahmed Smait; Sami Abduljabbar Rashid; Sarmad Nozad Mahmood; Sameer Alani
Bulletin of Electrical Engineering and Informatics Vol 11, No 4: August 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v11i4.3648

Abstract

This study investigates the performance of flexible, wideband antennas with high gain properties. The high gain feature can often be obtained by positioning a reflector in the same planes as the adjacent radiator. For flexibility, this survey discusses the antennas that were printed on the flexible substrate materials. Based on these properties, the antenna can be recognized in a variety of wireless applications, including wireless local-area-network (WLAN), Worldwide Interoperability for microwave access (WI-Max), wireless body area network (WBAN), and radio frequency identification (RFID), as well as wearable applications. The high-gain antennas are compact radio wave-based antennas that provide precise radio transmission management. Such antennas deliver more energy to the receiver, increasing the frequency of the received signal. By gathering more power, high-gain antennas may emit signals quicker. Furthermore, because directional antennas broadcast fewer signals from the main wave, interference may be greatly minimized. Finally, this article identifies the role of lightweight high gain flexible antennas in terms of their size, substrate materials, design, and feeding mechanisms, all of which can affect bandwidth, gain, radiation efficiency, and other important factors.
Early coronavirus disease detection using internet of things smart system Tabarak Ali Abdulhussein; Hamid A. Al-Falahi; Drai Ahmed Smait; Sameer Alani; Sarmad Nozad Mahmood; Mohammed Sulaiman Mustafa
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 1: February 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v13i1.pp1161-1168

Abstract

The internet of things (IoT) is quickly evolving, allowing for the connecting of a wide range of smart devices in a variety of applications including industry, military, education, and health. Coronavirus has recently expanded fast across the world, and there are no particular therapies available at this moment. As a result, it is critical to avoid infection and watch signs like fever and shortness of breath. This research work proposes a smart and robust system that assists patients with influenza symptoms in determining whether or not they are infected with the coronavirus disease (COVID-19). In addition to the diagnostic capabilities of the system, the system aids these patients in obtaining medical care quickly by informing medical authorities via Blynk IoT. Moreover, the global positioning system (GPS) module is used to track patient mobility in order to locate contaminated regions and analyze suspected patient behaviors. Finally, this idea might be useful in medical institutions, quarantine units, airports, and other relevant fields.