Claim Missing Document
Check
Articles

Found 2 Documents
Search

Mathematical Modeling and Simulation of Photovoltaic Cell using Matlab-Simulink Environment J.Surya Kumari; Ch. Sai Babu
International Journal of Electrical and Computer Engineering (IJECE) Vol 2, No 1: February 2012
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (170.173 KB)

Abstract

Photovoltaic power supplied to the utility grid is gaining more and more visibility while the world’s powers demand is increases. Growing demand, advancements in semiconductor technology and magnetic materials such as high frequency inductor cores, has a significant impact on PV inverter topologies and their efficiencies, on the improvement of the control circuits on the potential of costs reduction. The user naturally wants to operate the Photovoltaic (PV) array at its highest energy conversion output by continuously utilizing the maximum available solar power of the array. The electrical system PV modules are powered by solar arrays requires special design considerations due to varying nature of the solar power generated resulting from unpredictable and sudden changes in weather conditions which change the solar irradiation level as well as the cell operating temperature. This paper, a mathematical model of a Photovoltaic (PV) cell used matlab-simulink environment, is developed and presented. The model is developed using basic circuit equations of the photovoltaic solar cells including the effects of solar irradiation and temperature changes. The main objective is to find the parameters of the nonlinear I–V equation by adjusting the curve at three points: open circuit, maximum power, and short circuit. the method finds the best I–V equation for the single-diode photovoltaic (PV) model including the effect of the series and parallel resistances–  Key words : Photovoltaic system (PV), maximum power, PV array,PV cellDOI:http://dx.doi.org/10.11591/ijece.v2i1.117
Maximum Power Point Tracking Algorithms for Grid-Connected Photovoltaic Energy Conversion System J.Surya Kumari; Ch. Saibabu
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 3, No 4: December 2013
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (563.605 KB) | DOI: 10.11591/ijpeds.v3.i4.pp424-437

Abstract

As the use of energy is increasing, the requirements for the quality of the supplied electrical energy are more tighten. Energy is the most basic and essential of all resources.  As conventional sources of energy are rapidly depleting and the cost of energy is rising, photovoltaic energy becomes a promising alternative source. Photovoltaic (PV) generation is becoming increasingly important as a renewable source since it exhibits a great many merits such as cleanness, little maintenance and no noise. The output power of PV arrays is always changing with weather conditions, i.e., solar irradiation and atmospheric temperature. Therefore, a Maximum Power Point Tracking (MPPT) control to extract maximum power from the PV arrays at real time becomes indispensable in PV generation system. In recent years, a large number of techniques have been proposed for tracking the maximum power point (MPP). MPPT is used in photovoltaic (PV) systems to maximize the photovoltaic array output power, irrespective of the temperature and radiation conditions and of the load electrical characteristics the PV array output power is used to directly control the dc/dc converter, thus reducing the complexity of the system. The resulting system has high-efficiency. This paper presents in details comparison  of most popular MPPT algorithms techniques which are Perturb & Observe algorithm(P&O) and Improved Perturb & Observe algorithm(IPO). Improved Perturb & Observe algorithm (IPO), is a very promising technique that allows the increase of efficiency and reliability of such systems. Modeling and designing a PV system with Improved Perturb & Observe algorithm (IPO) is remarkably more complex than implementing a standard MPPT technique. In this paper, Improved Perturb & Observe algorithm (IPO), system for PV arrays is proposed and analyzed.