Noor Pratama Apriyanto
Universitas Muhammadiyah Yogyakarta

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

Energy Harvesting on Footsteps Using Piezoelectric based on Circuit LCT3588 and Boost up Converter Iswanto Iswanto; Slamet Suripto; Faaris Mujaahid; Karisma Trinanda Putra; Noor Pratama Apriyanto; Yosi Apriani
International Journal of Electrical and Computer Engineering (IJECE) Vol 8, No 6: December 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (326.312 KB)

Abstract

Piezoelectric utilization as a generator is an effort to obtain electrical energy that refers to the concept of energy harvesting referring the development of piezoelectric as a generator that converts the pressure or vibration generated from steps into electrical energy that can be used on low-power electronic devices. Because the use of piezoelectric as a generator allows the use in charging low voltage, a larger resource is required in different series. Based on the problem, an energy harvesting device and a voltage amplifier are created to increase the voltage of the pizoelectric output. An arduino microcontroller is used to control the energy harvesting device and voltage booster. It is required approximately 10 steps to charge four AA 1.2 Volt batteries and 80 steps to charge two 12 volt batteries respectively.
Piezoelectric Energy Harvester for IoT Sensor Devices Noor Pratama Apriyanto; Eka Firmansyah; Lesnanto Multa Putranto
IJITEE (International Journal of Information Technology and Electrical Engineering) Vol 5, No 4 (2021): December 2021
Publisher : Department of Electrical Engineering and Information Technology,Faculty of Engineering UGM

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijitee.67120

Abstract

Limited battery power is a major challenge for wireless sensor network (WSN) in internet of things (IoT) applications, especially in hard-to-reach places that require periodic battery replacement. The energy harvesting application is intended as an alternative to maintain network lifetime by utilizing environmental energy. The proposed method utilized piezoelectricity to convert vibration or pressure energy into electrical energy through a modular piezoelectric energy harvesting design used to supply energy to sensor nodes in WSN. The module design consisted of several piezoelectric elements, of which each had a different character in generating energy. A bridge diode was connected to each element to reduce the feedback effect of other elements when pressure was exerted. The energy produced by the piezoelectric is an impulse so that the capacitor was used to quickly store the energy. The proposed module produced 7.436 μJ for each step and 297.4 μJ of total energy with pressure of a 45 kg load 40 times with specific experiments installed under each step. The energy could supply WSN nodes in IoT application with a simple energy harvesting system. This paper presents a procedure for measuring the energy harvested from a commonly available piezoelectric buzzer. The specific configurations of the piezoelectric and the experiment setups will be explained. Therefore, the output energy characteristics will be understood. In the end, the potentially harvested energy can be estimated. Therefore, the configuration of IoT WSN could be planned.
Motorcycle-Security using Position Searching Algorithm Based on Hybrid Fuzzy-Dijkstra Rofiq Mubarok; Dwi Verdy Firmansyah; Dheny Haryanto; Noor Pratama Apriyanto; Umniyatul Mahmudah; Iswanto Iswanto
Indonesian Journal of Electrical Engineering and Computer Science Vol 3, No 2: August 2016
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v3.i2.pp468-474

Abstract

Motorcycle safety system has been provided by the manufacturer in the form of a handlebar lock and electrical key equipped with alarms. Keys provided by the manufacturers sometimes fail in securing a motorcycle. In addition the safety system does not provide position information of the stolen motorcycle to the owner. With these problems, the paper presents safety locked motorcycle equipped with artificial intelligence algorithms. Artificial intelligence algorithm is used to find and detect the location of the motorcycle using the shortest path algorithm. This paper applies search algorithm using Dijkstra algorithm where the algorithm is used to make the decision to get the location of the motorcycle. By using the algorithm, the location of the motorcycle can be detected but it is not able to find the shortest path needed. Therefore, this paper describes the modification of Dijkstra algorithm by adding a Fuzzy algorithm that is used for the weight values in decision making, so that it can pursue to find the shortest path.