Adel Al-Jumaily
University of Technology Sydney

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : International Journal of Electrical and Computer Engineering

Optimized Kernel Extreme Learning Machine for Myoelectric Pattern Recognition Khairul Anam; Adel Al-Jumaily
International Journal of Electrical and Computer Engineering (IJECE) Vol 8, No 1: February 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1121.149 KB) | DOI: 10.11591/ijece.v8i1.pp483-496

Abstract

Myoelectric pattern recognition (MPR) is used to detect user’s intention to achieve a smooth interaction between human and machine. The performance of MPR is influenced by the features extracted and the classifier employed. A kernel extreme learning machine especially radial basis function extreme learning machine (RBF-ELM) has emerged as one of the potential classifiers for MPR. However, RBF-ELM should be optimized to work efficiently. This paper proposed an optimization of RBF-ELM parameters using hybridization of particle swarm optimization (PSO) and a wavelet function. These proposed systems are employed to classify finger movements on the amputees and able-bodied subjects using electromyography signals. The experimental results show that the accuracy of the optimized RBF-ELM is 95.71% and 94.27% in the healthy subjects and the amputees, respectively. Meanwhile, the optimization using PSO only attained the average accuracy of 95.53 %, and 92.55 %, on the healthy subjects and the amputees, respectively. The experimental results also show that SW-RBF-ELM achieved the accuracy that is better than other well-known classifiers such as support vector machine (SVM), linear discriminant analysis (LDA) and k-nearest neighbor (kNN).